

DRAWN BY

陳秋霞 candy.chen

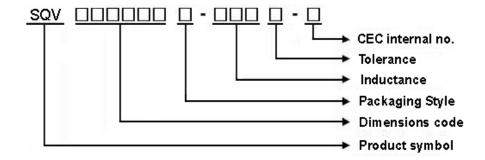
ISO9001 & ISO14001 & TS16949 CHILISIN ELECTRONICS CORP.

Lead-Free & RoHs Compliance!!

SPECIFICATION FOR APPROVAL

CUSTOMER:	ELTECH						
CUSTOMER P/N:							
OUR DWG No:			CE1-4A042	21			
QUANTITY:	Х	X Pcs. DATE: 2014/10/13					
ITEM:	SQV322520T-561J-N						
	CDE	CIEIC	ATION				
	_	CEPTE	_				
COMPONENT							
ENGINEER							
ELECTRICAL							
ENGINEER							
MECHANICAL							
ENGINEER							
APPROVED							
REJECTED							
奇力新電子股份有限公司		東旁	艺奇力新電子有				
				ngguan) Co., Ltd.			
CHILISIN ELECTRONICS COR				Cara arrival. A alma ha ha fara fi a ra			
		No.	78, Puxing Rd., Yu	liangwei Administration			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303,		No. 1 Area Gua	78, Puxing Rd., Yu ı, Qingxi Town, Doı ngdong,China	ngguan City,			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA		No. ¹ Area Gua TEL	78, Puxing Rd., Yu ı, Qingxi Town, Doı ngdong,China ∶+86-769-8773-02	ngguan City, 251~3			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA TEL: (03) 599-2646		No. Area Gua TEL FAX	78, Puxing Rd., Yu ı, Qingxi Town, Doı ngdong,China : +86-769-8773-02 : +86-769-8773-0	ngguan City, 251~3 232			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA		No. Area Gua TEL FAX	78, Puxing Rd., Yu ı, Qingxi Town, Doı ngdong,China ∶+86-769-8773-02	ngguan City, 251~3 232			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA TEL: (03) 599-2646 FAX: (03) 599-9176		No. Area Gua TEL FAX	78, Puxing Rd., Yu ı, Qingxi Town, Doı ngdong,China : +86-769-8773-02 : +86-769-8773-0	ngguan City, 251~3 232			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA TEL: (03) 599-2646 FAX: (03) 599-9176 E-mail: Sales@chilisin.com.tw http://www.chilisin.com.tw 台北營業處		No. Area Gua TEL FAX E-ma	78, Puxing Rd., Yu n, Qingxi Town, Doi ngdong,China :+86-769-8773-0 :+86-769-8773-0 ail:cect@chilisin.c	ngguan City, 251~3 232 com.tw 有限公司			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA TEL: (03) 599-2646 FAX: (03) 599-9176 E-mail: Sales@chilisin.com.tw http://www.chilisin.com.tw 台北營業處 Taipei Office		No. Area Gua TEL FAX E-ma 奇力	78, Puxing Rd., Yu n, Qingxi Town, Doi ngdong,China :+86-769-8773-0 :+86-769-8773-0 ail:cect@chilisin.c	ngguan City, 251~3 232 com.tw 有限公司 zhou) Co., Ltd.			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA TEL: (03) 599-2646 FAX: (03) 599-9176 E-mail: Sales@chilisin.com.tw http://www.chilisin.com.tw 台北營業處 Taipei Office 1F., No.2, Aly. 1, Ln. 235, Baoq	iao Rd.,	No.: Area Gua TEL FAX E-ma 奇力 Chili	78, Puxing Rd., Yu n, Qingxi Town, Doi ngdong,China : +86-769-8773-0 : +86-769-8773-0 ail : cect@chilisin.c 可新電子(蘇州) sin Electronics (Su 43,Song Shan Rd.	ngguan City, 251~3 232 com.tw 有限公司			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA TEL: (03) 599-2646 FAX: (03) 599-9176 E-mail: Sales@chilisin.com.tw http://www.chilisin.com.tw 台北營業處 Taipei Office	iao Rd.,	No.: Area Gua TEL FAX E-ma 奇力 Chili No.1 Suzh	78, Puxing Rd., Yu n, Qingxi Town, Doi ngdong,China :+86-769-8773-0 :+86-769-8773-0 ail:cect@chilisin.c	ngguan City, 251~3 232 com.tw 有限公司 zhou) Co., Ltd.			
CHILISIN ELECTRONICS COR NO.29,LANE 301,TEHHSIN ROAD,HUKOU, HSINCHU,TAIWAN,303, REPUBLIC OF CHINA TEL: (03) 599-2646 FAX: (03) 599-9176 E-mail: Sales@chilisin.com.tw http://www.chilisin.com.tw 台北營業處 Taipei Office 1F., No.2, Aly. 1, Ln. 235, Baoq Xindian Dist., New Taipei City 2	iao Rd., 31, Taiwan	No.: Area Gua TEL FAX E-ma 奇力 Chilli No.1 Suzh Post TEL:	78, Puxing Rd., Yu n, Qingxi Town, Doi ngdong,China : +86-769-8773-0 : +86-769-8773-0 ail : cect@chilisin.c 了新電子(蘇州) sin Electronics (Su 43,Song Shan Rd.	ngguan City, 251~3 232 com.tw 有限公司 zhou) Co., Ltd. , Suzhou New District,			

CHECKED BY


鍾德慶 shawn.zhong

APPROVED BY

陳瑞揚 ryan.chen

- 1 Scope: This specification applies to CHIP COIL
- 2 Part Numbering: Product Identification

3 Rating:

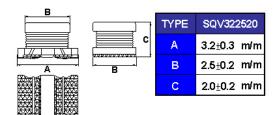
Operating Temperature: $-4.0 \, ^{\circ}\text{C} \sim 1.2.5 \, ^{\circ}\text{C}$ (Including self - temperature rise)

Storage Temperature: Under $2.5\,^{\circ}\mathrm{C}$,Humidity < 75% RH

4 Marking:

Ex: SQV322520T-561J-N

Marking: 561


Marking color: Black

5 Standard Testing Condition

	Unless otherwise specified	In case of doubt
Temperature	Ordinary Temperature(15 to 35°C)	20±2 ℃
Humidity	Ordinary Humidity(25 to 85% RH)	60 to 70 % RH

6 Configuration and Dimensions:

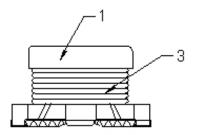
7 ELECTRICAL CHARACTERISTICS :

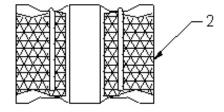
Part No.	Inductance (uH)	L/Q Test Freq.	Q Min.	SRF (MHZ)Min.	RDC (Ω)Max.	Rated Current (A)	Tolerance	Marking
SQV322520T-561□-N	560	1KHz/796KHz	40	2	28	0.04	J,K,M	561

NOTE: \Box -tolerance J=±5% / K=±10% / M=±20%

3.L/Q Test OSC @1V

^{1.}Operating temperature range $-4~0~\mathrm{C}\sim1~2~5~\mathrm{C}$ (Including self - temperature rise)


^{2.}Rated Current: Self temperature rise shall be limited to 35℃ Max.Inductance drop 10% typ.


[&]quot;-N" FOR COMPLETELY LEAD FREE TYPE(INCLUDING FERRITE BODY & SOLDER)

8 SQV322520T Series

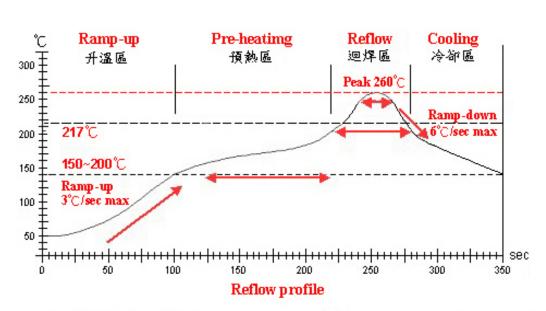
8.1 Construction:

8.2 Material List:

ITEM	PART	DESCRIPTION	SUPPLIES
1	CORE	FERRITE	CHILISIN
2	TERMINAL	Sn/Ag3.0/Cu0.5	Dyfenco
3	WIRE	Copper wire	

ISO9001 & ISO14001 & TS16949 CHILISIN ELECTRONICS CORP.

SQV322520T Series Specification


9 Reliability Of Ferrite Wire Wound Chip Coil 1-1.Mechanical Performance

	Item	Specification	Test Method
1-1-1	Shear Test	Chip coil shall not be	Substrate: 4.5 Chip Ciol
		damaged after tested as test method	Glass-epoxy substrate Pattem Solder resist Substrate
			Solder:Sn/Ag3.0/Cu0.5
			Applied Direction:
			Force : 10N Substrate Hold Duration:5s±1s
1-1-2	Bending Test		Substrate:Glass-epoxy substrate(100mm*40mm*1.6mm)
' ' -	Bending rest		speed of Applying Force:1mm/s
			Deflection:2mm
			Hold Duration:30s Fraction Deflection Product (in nn)
1-1-3	Vibration		Oscillation Frequency:10Hz to 55 Hz to 10 hZ for 1 min
			Total Amplitude:1.5mm Testing Time:A period of 2 hours in each of 3 mutually perpendicular directions(Total 6 hours)
1-1-4	Solderability	The wetting area of the electrode shall be at least 95% covered with new solder coating	Solder:Sn/Ag3.0/Cu0.5 per-Heating:150°C±10°C/1min to 2min solder Temperature:245°C±5°C Immersion Time:4s±1s
1-1-5	Resistance to Soldering Heat	Appearance:No damage	Solder:Sn/Ag3.0/Cu0.5 per-Heating:150°C±10°C/1min to 2min solder Temperature:260°C±5°C Immersion Time:10s±1s
1-1-6	Resistance to solvent	There must be no change in appearance or obliteration of marking.	Inductors must withstand 6 minutes of alcohol or water.

1.2 Environmental Performance

No	Item	Specification	Test Method			
1-2-1	Heat Resistance	Appearance: No damage Inductance Change:within±10% Q change: within±30%	Temperature:85°C±3°C Time:1000h Then measured after exposure in the room Condition for 24h±2h			
1-2-2	Cold Resistance		Temperature: -40°C±3°C Time:1000h Then measured after exposure in the room Condition for 24h±2h			
1-2-3	Humidity		Temperature: 40°C±2°C Humidity:90%(RH) to 95%(RH) Time:1000h Then measures after exposure in the room Condition for 24h±2h			
1-2-4	Temperature Cycle		One cycle: Step Temperature (°C) 1 -40±3 2 25±2 3 125±3 4 25±2 Total: 100cycles Measured after exposure in the room condition for 2	Time (min) 30 3 30 3 30 30 30 4hrs		

Lead-Free(LF) 標準溫度分析範圍

Refer to J-STD-020C

管制項目 Item.	升溫區 Ramp-up	預熱區 Pre-heatimg	迴焊區 Reflow	Peak Temp	冷卻區 Cooling
溫度範圍 Temp.scope	R.T. ~150°C	150°C ~ 200°C	217℃	260±5°C	Peak Temp. ~ 150°C
標準時間 Time spec.	_	60 ~ 180 sec	60 ~ 150 sec	20 ~ 40 sec	_
實際時間 Time result	<u> </u>	75 ~ 100 sec	90 ~ 120 sec	5 ~ 10 sec	_

10 TEST DATA FOR PREPRODUCTION SAMPLES

QF-1419

Q	520T-561.	1								
	CDE			DESCRIPTION: SQV322520T-561J-N						
1)	(MHz)	RDC (Ω)	Rated Current (A)	A m/m	B m/m	C m/m				
:5%										
40-0	2-0	28+0	0.04	3.2±0.3	2.5±0.2	2.0±0.2				
	7									
5 43.2	3.10	24.5	OK	3.18	2.51	2.05				
0 42.9	2.91	24.7	ОК	3.15	2.45	2.01				
8 44.4	3.08	24.0	ОК	3.16	2.47	2.02				
8 45.5	3.37	22.9	OK	3.18	2.51	1.99				
9 42.9	3.63	23.5	ОК	3.12	2.48	2.01				
6 43.78	3.218	23.92		3.158	2.484	2.016				
2 2.6	0.72	1.8		0.06	0.06	0.06				
	40-0 V 1V 796KHz 5 43.2 0 42.9 8 44.4 8 45.5 9 42.9	40-0 2-0 V 1V 796KHZ 5 43.2 3.10 0 42.9 2.91 8 44.4 3.08 8 45.5 3.37 9 42.9 3.63	40-0 2-0 28+0 V 1V T796KHZ 5 43.2 3.10 24.5 0 42.9 2.91 24.7 8 44.4 3.08 24.0 8 45.5 3.37 22.9 9 42.9 3.63 23.5	25% 40-0 2-0 28+0 0.04 V 1V 796KHZ 25 43.2 3.10 24.5 OK 20 42.9 2.91 24.7 OK 28 44.4 3.08 24.0 OK 28 45.5 3.37 22.9 OK 29 42.9 3.63 23.5 OK	25% 40-0 2-0 28+0 0.04 3.2±0.3 // 1V	40-0 2-0 28+0 0.04 3.2±0.3 2.5±0.2 1V	Current (A) 40-0 2-0 28+0 0.04 3.2±0.3 2.5±0.2 2.0±0.2 / 1V /12 796KHZ 5 43.2 3.10 24.5 OK 3.18 2.51 2.05 0 42.9 2.91 24.7 OK 3.15 2.45 2.01 8 44.4 3.08 24.0 OK 3.16 2.47 2.02 8 45.5 3.37 22.9 OK 3.18 2.51 1.99 9 42.9 3.63 23.5 OK 3.12 2.48 2.01 6 43.78 3.218 23.92 3.158 2.484 2.016	Current (A) 40-0 2-0 28+0 0.04 3.2±0.3 2.5±0.2 2.0±0.2 // 1V //2 796KHZ 5 43.2 3.10 24.5 OK 3.18 2.51 2.05 0 42.9 2.91 24.7 OK 3.15 2.45 2.01 8 44.4 3.08 24.0 OK 3.16 2.47 2.02 8 45.5 3.37 22.9 OK 3.18 2.51 1.99 9 42.9 3.63 23.5 OK 3.12 2.48 2.01 6 43.78 3.218 23.92 3.158 2.484 2.016	Current (A) 40-0 2-0 28+0 0.04 3.2±0.3 2.5±0.2 2.0±0.2 / 1V Hz 796KHZ 55 43.2 3.10 24.5 OK 3.18 2.51 2.05 0 42.9 2.91 24.7 OK 3.15 2.45 2.01 88 44.4 3.08 24.0 OK 3.16 2.47 2.02 88 45.5 3.37 22.9 OK 3.18 2.51 1.99 9 42.9 3.63 23.5 OK 3.12 2.48 2.01 66 43.78 3.218 23.92 3.158 2.484 2.016	

TEST INSTRUMENT:

L: 1MHz ==> HP4285A 1KHz ==> HP4192A

Q: HP4285A

RDC: CHEN HWA 502BC

Rate Current: HP4284A+HP42841A

SRF: HP4294A+16092A

APPEARANCE AND DIMENSIONS:

SPEC: MEET ITEM 6.

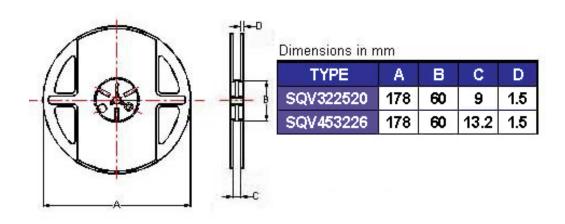
TEST METHOD: VISUAL INSPECTION AND MEASURED WITH SILDE CALIPERS.

TESTING CONDITIONS:

	Unless otherwise specified	In case of doubt
Temperature	Ordinary Temperature (15 to 35°ℂ)	20 ± 2 °C
Humidity	Ordinary Humidity (25 to 85 %RH)	60 to 70 %RH

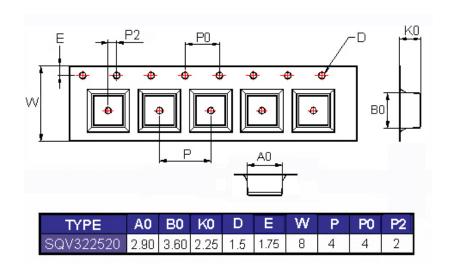
11 PACKAGING

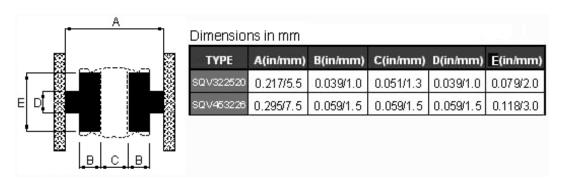
11.1 Packaging -Cover tape


The force for tearing off cover tape is 10 to 100 grams in the arrow direction.

11.2 Packaging Quantity

TYPE	BULK	PCS/REEL
SQV322520	✓	2000
SQV453226	✓	500


11.3 Reel Dimensions



11 PACKAGING

11.4 Tape Dimensions in mm

12 Recommended Pattern

13 Note:

- 1. Please make sure that your product is has been evaluated and confirmed against your specifications when our product is mounted to your product.
- 2. Do not knock nor drop.
- 3. All the items and parameters in this product specification have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment agreed upon between you and us. You are requested not to use our product deviating from such agreement.
- 4. Please keep the distance between transformer/coil and other components (refer to the standard IEC 950)

13 Note:

5. Storage and Handing Requirements

(1)Storage period

Use the products within 12 months after delivered Solderability should be checked if this period is exceeded

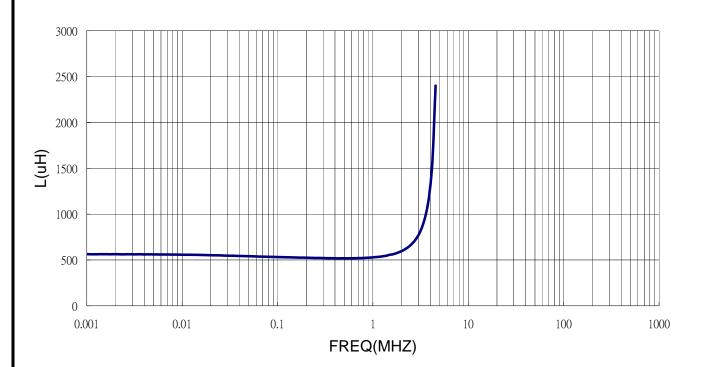
(2)Storage conditions

*Products should be stored in the warehouse on the following conditions

Temperature: -10°C ~ 40°C

Humidity : $30\% \sim 70\%$ relative humidity no rapid change on temperature and humidity The electrode of the products is coated with solder.Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability.

- *Products should not be storaged on bulk packaging condition to prevent the chipping of the core and the breaking of winding wire caused by the collision between the products.
- *Products should be storaged on the palette for the prevention of the influence from humidity, dust and so on.
- *Products should be storaged in the warehouse without heat shock,vibration,direct sunlight and so on.


(3) Handing Condition

Care should be taken when transporting or handing product to avoid excessive vibration or mechanical shock.

SQV322520T-561J-N

