

# High Efficacy VIOLET LED Emitter

## LZ4-00UA00





#### **Key Features**

- High Efficacy 10W Violet LED
- Ultra-small foot print 7.0mm x 7.0mm
- Surface mount ceramic package with integrated glass lens
- Very low Thermal Resistance (1.1°C/W)
- Electrically neutral thermal path
- Individually addressable die
- Very high Radiant Flux density
- JEDEC Level 1 for Moisture Sensitivity Level
- Autoclave complaint (JEDEC JESD22-A102-C)
- Lead (Pb) free and RoHS compliant
- Reflow solderable (up to 6 cycles)
- Emitter available on Standard or Serially Connected MCPCB (optional)

#### **Typical Applications**

- Dental Curing and Teeth Whitening
- Sterilization and Medical
- Ink and Adhesive Curing
- DNA Gel

#### Description

The LZ4-00UA00 VIOLET LED emitter provides superior radiometric power in the wavelength range specifically required for sterilization, dental curing lights, and numerous medical applications. With a 7.0mm x 7.0mm ultrasmall footprint, this package provides exceptional optical power density. The radiometric power performance and optimal peak wavelength of this LED are matched to the response curves of many dental resins, inks & adhesives, resulting in a significantly reduced curing time. The patent-pending design has unparalleled thermal and optical performance. The high quality materials used in the package are chosen to optimize light output, have excellent VIOLET resistance, and minimize stresses which results in monumental reliability and radiant flux maintenance.



COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.



## Part number options

#### Base part number

| Part number     | Description                                  |
|-----------------|----------------------------------------------|
| LZ4-00UA00-xxxx | LZ4 emitter                                  |
| LZ4-40UA00-xxxx | LZ4 emitter on Standard Star 1 channel MCPCB |

#### Bin kit option codes

#### Single wavelength bin (5nm range)

| Kit number suffix | Min flux Bin | Color Bin Range | Description                            |
|-------------------|--------------|-----------------|----------------------------------------|
| 00U4              | R            | U4              | R minimum flux; wavelength U4 bin only |
| 00U5              | S            | U5              | S minimum flux; wavelength U5 bin only |
| 00U6              | S            | U6              | S minimum flux; wavelength U6 bin only |
| 00U7              | S            | U7              | S minimum flux; wavelength U7 bin only |
| 00U8              | S            | U8              | S minimum flux; wavelength U8 bin only |



#### **Radiant Flux Bins**

#### Table 1:

| Bin Code | Minimum Radiant Flux ( $\Phi$ ) @ I <sub>F</sub> = 700mA <sup>[1,2]</sup> | Maximum Radiant Flux (Φ) @ I <sub>F</sub> = 700mA <sup>[1,2]</sup> |
|----------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
| R        | (W)<br>2.40                                                               | (W)<br>3.00                                                        |
| S        | 3.00                                                                      | 3.80                                                               |
| Т        | 3.80                                                                      | 4.80                                                               |

#### Notes for Table 1

- 1. Radiant flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements.
- 2. Future products will have even higher levels of radiant flux performance. Contact LED Engin Sales for updated information.

#### **Peak Wavelength Bins**

Table 2:

| Bin Code | Minimum<br>Peak Wavelength (λ <sub>P</sub> )<br>@ I <sub>F</sub> = 700mA <sup>[1]</sup><br>(nm) | Maximum Peak Wavelength $(\lambda_P)$ @ $I_F = 700$ mA <sup>[1]</sup> (nm) |  |
|----------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| U4       | 385                                                                                             | 390                                                                        |  |
| U5       | 390                                                                                             | 395                                                                        |  |
| U6       | 395                                                                                             | 400                                                                        |  |
| U7       | 400                                                                                             | 405                                                                        |  |
| U8       | 405                                                                                             | 410                                                                        |  |

#### Notes for Table 2:

#### **Forward Voltage Bins**

Table 3:

| Bin Code | Minimum Forward Voltage (V <sub>F</sub> ) @ I <sub>F</sub> = 700mA <sup>[1,2]</sup> (V) | Maximum Forward Voltage (V <sub>F</sub> ) @ I <sub>F</sub> = 700mA <sup>[1,2]</sup> (V) |  |
|----------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| 0        | 13.76                                                                                   | 18.56                                                                                   |  |

#### Notes for Table 3:

- 1. LED Engin maintains a tolerance of  $\pm\,0.16V$  for forward voltage measurements.
- 2. Forward Voltage is binned with all four LED dice connected in series.

<sup>1.</sup> LED Engin maintains a tolerance of  $\pm$  2.0nm on peak wavelength measurements.



#### **Absolute Maximum Ratings**

Table 4:

| Parameter                                  | Symbol                                   | Value                                  | Unit |
|--------------------------------------------|------------------------------------------|----------------------------------------|------|
| DC Forward Current <sup>[1]</sup>          | I <sub>F</sub>                           | 1000                                   | mA   |
| Peak Pulsed Forward Current <sup>[2]</sup> | I <sub>FP</sub>                          | 1000                                   | mA   |
| Reverse Voltage                            | $V_R$                                    | See Note 3                             | V    |
| Storage Temperature                        | $T_{stg}$                                | -40 ~ +150                             | °C   |
| Junction Temperature                       | T <sub>J</sub>                           | 125                                    | °C   |
| Soldering Temperature                      | T <sub>sol</sub>                         | 260                                    | °C   |
| Allowable Reflow Cycles                    | 6                                        |                                        |      |
| Autoclave Conditions [4]                   | 121°C at 2 ATM,<br>100% RH for 168 hours |                                        |      |
| ESD Sensitivity <sup>[5]</sup>             |                                          | > 2,000 V HBM<br>Class 2 JESD22-A114-D |      |

#### Notes for Table 4:

- Maximum DC forward current is determined by the overall thermal resistance and ambient temperature.
- Follow the curves in Figure 10 for current derating.
- Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.
- LEDs are not designed to be reverse biased.
- Autoclave Conditions per JEDEC JESD22-A102-C.
- LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ4-00UA00 in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.

#### Optical Characteristics @ T<sub>C</sub> = 25°C

Table 5:

| Donomotor                                | Typical           |           |           |           | 11      |
|------------------------------------------|-------------------|-----------|-----------|-----------|---------|
| Parameter                                | Symbol            | 385-390nm | 390-400nm | 400-410nm | Unit    |
| Radiant Flux (@ I <sub>F</sub> = 700mA)  | Ф                 | 2.95      | 3.50      | 3.90      | W       |
| Radiant Flux (@ I <sub>F</sub> = 1000mA) | Ф                 | 4.10      | 4.90      | 5.45      | W       |
| Peak Wavelength <sup>[1]</sup>           | $\lambda_{P}$     | 385       | 395       | 405       | nm      |
| Viewing Angle <sup>[2]</sup>             | 2Θ <sub>1/2</sub> |           | 97        |           | Degrees |
| Total Included Angle <sup>[3]</sup>      | Θ <sub>0.9V</sub> |           | 120       |           | Degrees |

- When operating the VIOLET LED, observe IEC 60825-1 class 3B rating. Avoid exposure to the beam.
- Viewing Angle is the off axis angle from emitter centerline where the radiant power is ½ of the peak value.
- Total Included Angle is the total angle that includes 90% of the total radiant flux.

#### Electrical Characteristics @ T<sub>c</sub> = 25°C

Table 6:

| Parameter                                  | Symbol                  | Тур   | oical  | Unit    |
|--------------------------------------------|-------------------------|-------|--------|---------|
| raranteet                                  | Symbol                  | 1 Die | 4 Dice | O.I.I.C |
| Forward Voltage (@ $I_F = 700$ mA)         | $V_{F}$                 | 3.9   | 15.6   | V       |
| Forward Voltage (@ $I_F = 1000$ mA)        | $V_{F}$                 | 4.1   | 16.5   | V       |
| Temperature Coefficient of Forward Voltage | $\Delta V_F/\Delta T_J$ | -1    | 4.2    | mV/°C   |
| Thermal Resistance<br>(Junction to Case)   | RΘ <sub>J-C</sub>       | 1     | 1      | °C/W    |

COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.



#### **IPC/JEDEC Moisture Sensitivity Level**

Table 7 - IPC/JEDEC J-STD MSL-20 Classification:

|       |           |                   |              | Soak Requ       | uirements  |            |
|-------|-----------|-------------------|--------------|-----------------|------------|------------|
|       | Floo      | r Life            | Stan         | dard            | Accel      | erated     |
| Level | Time      | Conditions        | Time (hrs)   | Conditions      | Time (hrs) | Conditions |
| 1     | Unlimited | ≤ 30°C/<br>85% RH | 168<br>+5/-0 | 85°C/<br>85% RH | n/a        | n/a        |

#### Notes for Table 7:

#### **Average Radiant Flux Maintenance Projections**

Lumen maintenance generally describes the ability of an emitter to retain its output over time. The useful lifetime for power LEDs is also defined as Radiant Flux Maintenance, with the percentage of the original light output remaining at a defined time period.

Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, 70% Radiant Flux Maintenance (RP70%) at 20,000 hours of operation at a forward current of 700 mA per die. This projection is based on constant current operation with junction temperature maintained at or below 80°C.

The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer's exposure time (MET) between bake and bag
and the floor life of maximum time allowed out of the bag at the end user of distributor's facility.



Pad

1

2

3

4

5

6

7

8

9[2]

Pin Out

Function

Anode

Cathode Anode

Cathode

Anode

Cathode

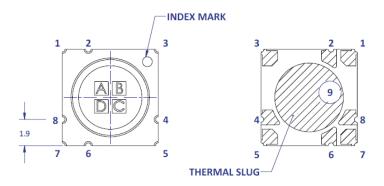
Anode

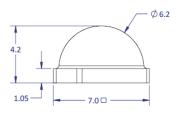
Cathode

Thermal

Die

В


В


С

С

D

## **Mechanical Dimensions (mm)**





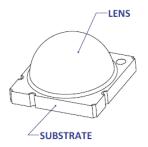



Figure 1: Package outline drawing.

# 8

#### Notes for Figure 1:

- Unless otherwise noted, the tolerance = ± 0.20 mm.
- 2. Thermal contact, Pad 9, is electrically neutral.

## **Recommended Solder Pad Layout (mm)**

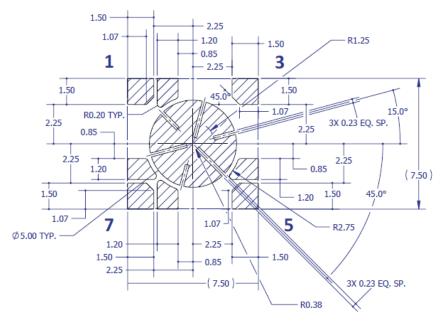



Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad.

#### Note for Figure 2a:

- 1. Unless otherwise noted, the tolerance =  $\pm$  0.20 mm.
- 2. This pad layout is "patent pending".

COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.



## **Recommended Solder Mask Layout (mm)**

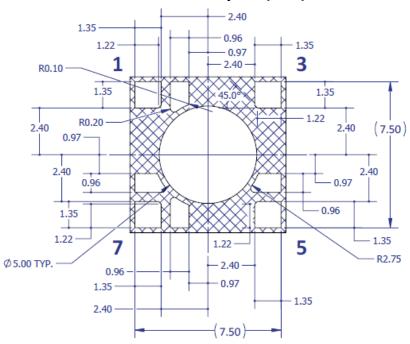



Figure 2b: Recommended solder mask opening (hatched area) for anode, cathode, and thermal pad.

Note for Figure 2b:

1. Unless otherwise noted, the tolerance =  $\pm$  0.20 mm.

## **Reflow Soldering Profile**

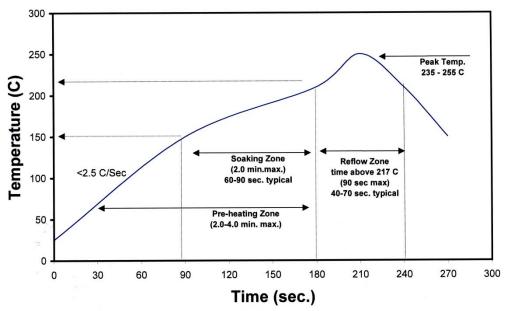



Figure 3: Reflow soldering profile for lead free soldering.

Notes for Figure 3:

1. Solder profile for low temperature solder. LED Engin recommends 58Bi-42Sn (wt.%) Solder for the LZ4-00UA00.

COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.



## **Typical Radiation Pattern**

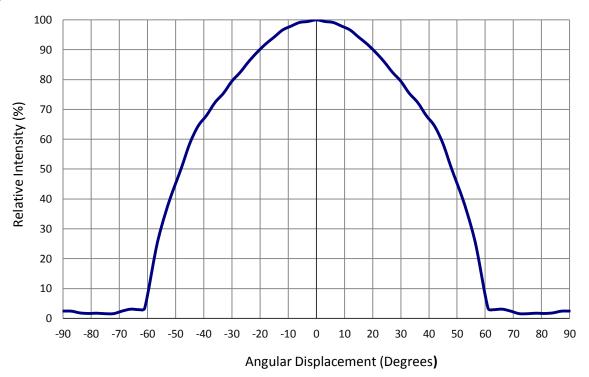



Figure 4: Typical representative spatial radiation pattern.

## **Typical Relative Spectral Power Distribution**

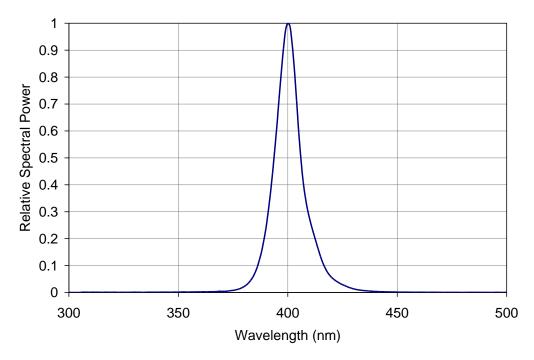



Figure 5: Typical relative spectral power vs. wavelength @  $T_C$  = 25°C.

COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.



## **Typical Peak Wavelength Shift over Temperature**

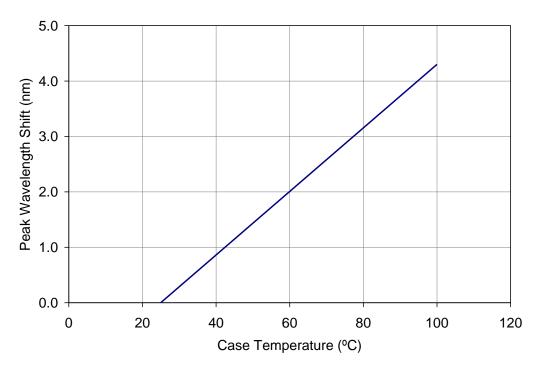



Figure 6: Typical peak wavelength shift vs. case temperature.

## **Typical Normalized Radiant Flux**

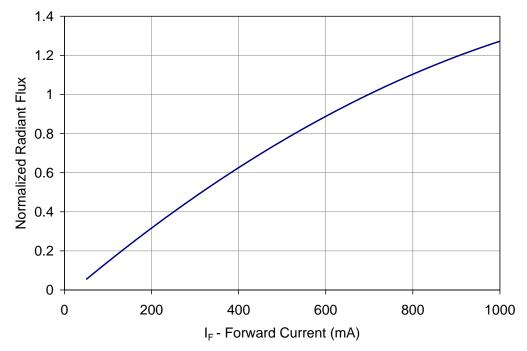



Figure 7: Typical normalized radiant flux vs. forward current @  $T_C$  = 25°C.



## **Typical Normalized Radiant Flux over Temperature**

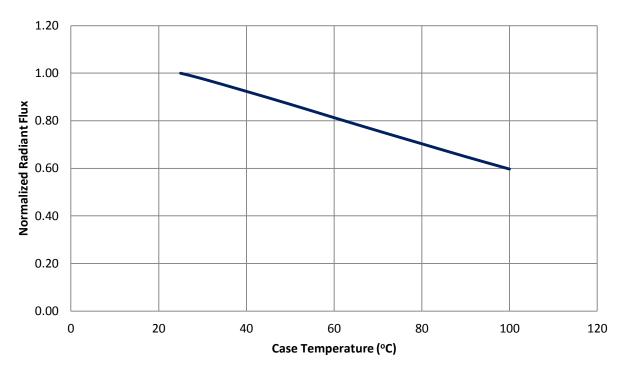



Figure 8: Typical normalized radiant flux vs. case temperature @700mA

## **Typical Forward Current Characteristics**

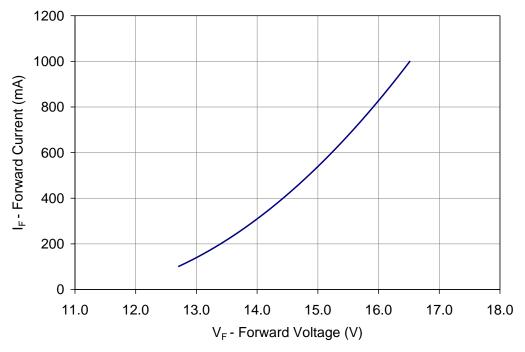
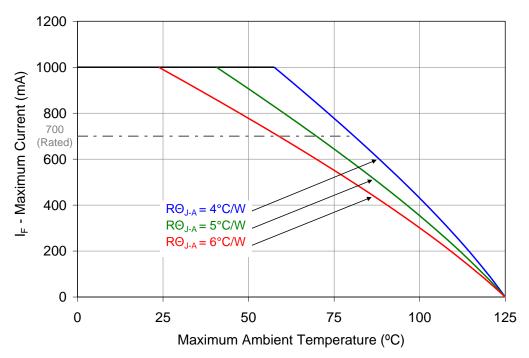


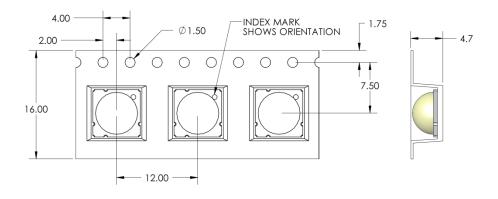

Figure 9: Typical forward current vs. forward voltage @  $T_C$  = at 25°C.

COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.



## **Current De-rating**





Figure 10: Maximum forward current vs. ambient temperature based on  $T_{J(MAX)}$  = 125°C.

#### Notes for Figure 10:

- 1.  $R\Theta_{J-C}$  [Junction to Case Thermal Resistance] for the LZ4-00UA00 is typically 1.1°C/W.
- 2.  $R\Theta_{J-A}$  [Junction to Ambient Thermal Resistance] =  $R\Theta_{J-C}$  +  $R\Theta_{C-A}$  [Case to Ambient Thermal Resistance].



## **Emitter Tape and Reel Specifications (mm)**



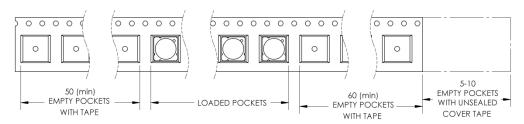



Figure 11: Emitter carrier tape specifications (mm).

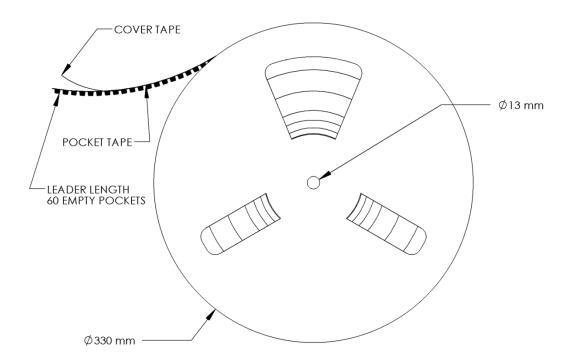



Figure 12: Emitter Reel specifications (mm).

#### Notes:

1. Packaging contains VIOLET caution labels. Avoid exposure to the beam and wear appropriate protective eyewear when operating the VIOLET LED.

COPYRIGHT © 2014 LED ENGIN. ALL RIGHTS RESERVED.



# LZ4 MCPCB Family

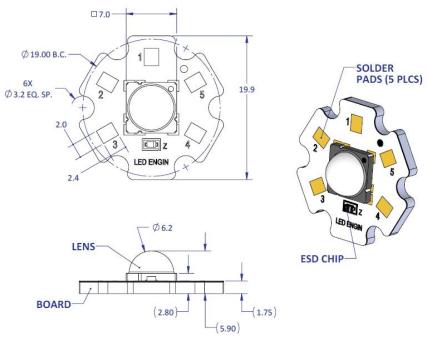
| Part number | Type of MCPCB | Diameter<br>(mm) | Emitter + MCPCB Thermal Resistance (°C /W) | Typical V <sub>f</sub><br>(V) | Typical I <sub>f</sub><br>(mA) |
|-------------|---------------|------------------|--------------------------------------------|-------------------------------|--------------------------------|
| LZ4-4xxxxx  | 1-channel     | 19.9             | 1.1 + 1.1 = 2.2                            | 15.6                          | 700                            |

#### **Mechanical Mounting of MCPCB**

- MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to substrate cracking and subsequently LED dies cracking.
- To avoid MCPCB bending:
  - o Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.
  - Care must be taken when securing the board to the heat sink. This can be done by tightening three M3 screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will increase the likelihood of board bending.
  - o It is recommended to always use plastics washers in combinations with the three screws.
  - o If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after tightening (with controlled torque) and then re-tighten the screws again.

#### Thermal interface material

- To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when mounting the MCPCB on to the heat sink.
- There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal epoxies. An example of such material is Electrolube EHTC.
- It is critical to verify the material's thermal resistance to be sufficient for the selected emitter and its operating conditions.


#### Wire soldering

- To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150°C. Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is recommended to use a solder iron of more than 60W.
- It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601)



## LZ4-4xxxx

## 1 channel, Standard Star MCPCB (1x4) Dimensions (mm)



#### Notes:

- Unless otherwise noted, the tolerance = ± 0.2 mm.
- Slots in MCPCB are for M3 or #4-40 mounting screws.
- LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.
- Electrical connection pads on MCPCB are labeled "+" for Anode and "-" for Cathode
- LED Engin recommends thermal interface material when attaching the MCPCB to a heatsink
- The thermal resistance of the MCPCB is: ROC-B 1.1°C/W

## **Components used**

MCPCB: HT04503 (Bergquist)

ESD chips: BZX585-C30 (NXP, for 4 LED dies in series)

| Pad layout |              |            |           |  |  |  |
|------------|--------------|------------|-----------|--|--|--|
| Ch.        | MCPCB<br>Pad | String/die | Function  |  |  |  |
| 1          | 1, 2, 3      | 1/ABCD     | Cathode - |  |  |  |
| 1          | 4, 5         | 1/ABCD     | Anode +   |  |  |  |



#### **Company Information**

LED Engin, Inc., based in California's Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient lighting experiences. The LuxiGen™ Platform — an emitter and lens combination or integrated module solution, delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors, including whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target. The small size combined with powerful output allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required. LED Engin's packaging technologies lead the industry with products that feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient solid state lighting solutions.

LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions.

LED Engin reserves the right to make changes to improve performance without notice.

Please contact sales@ledengin.com or (408) 922-7200 for more information.