

VTC4 series Voltage Controlled Temperature Compensated Crystal Oscillator

The VTC4, VCTXCO

Features

- Clipped Sine Wave Output
- Output Frequencies to 27 MHz
- Fundamental Crystal Design
- Optional VCXO Function available
- · Gold over nickel contact pads
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive value
 and fully compatible with lead free assembly

Applications

- Wireless Communications
- Base Stations
- Point to point radios
- Broadband Access
- Test Equipment
- Handsets

Description

Vectron's VTC4 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, clipped sine wave output, temperature compensated oscillator, operating off either a 2.8, 3.0, 3.3 or 5.0 volt supply.

Performance Characteristics

Table 1. Electrical Performance					
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f _O	10.000		27.000	MHz
Typical Supply Voltage ¹ Ordering option, see last page		2.8, 3.0, 3.3 or 5.0		V	
Supply Current 10.000 MHz to < 15.000 MHz 15.000 MHz to 27.00 MHz	I _{DD}			1.5 2.0	mA
Output Level ²	Vp/p	0.8			V
Output Load			10K II 10pf		
Control Voltage Impedance	Z _{Vc}	1			Mohm
Control Voltage to reach pull All options (5.0, 3.3,3.0 and 2.8V)		0.5		2.5	V
Pull Range Ordering option, see last page	TPR	±5, ±8, ±10, ±15			ppm
Temperature Stability Ordering option, see last page.		±0.5 to ±5.0		ppm	
Initial Accuracy, "No Adjust" option			±0.5	±1.0	ppm
Power Supply Stability				±0.2	ppm
Load Stability				±0.2	ppm
Aging				±1.0	ppm/year
Operating temperature Ordering option, see last page		0/55, -10/6	0/55, -10/60, -20/70, -30/80, -40/85		
Phase Noise, 12.800MHz 10 Hz offset 100 Hz offset 1 kHz offset 10 kHz offset 100 kHz offset 5MHz offset			-89 -113 -137 -150 -155 -156		dBc/Hz
Start-up time				2	ms

1. A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground) is recommended. 2. Output is DC coupled.

VTC4 Data Sheet

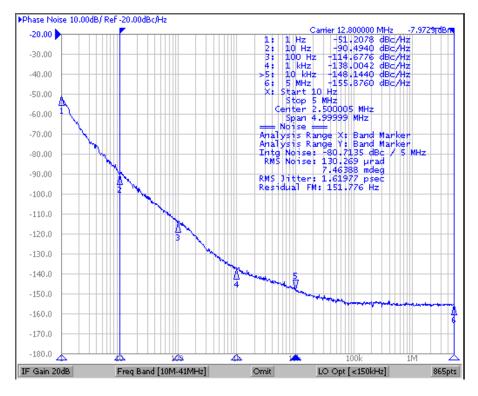
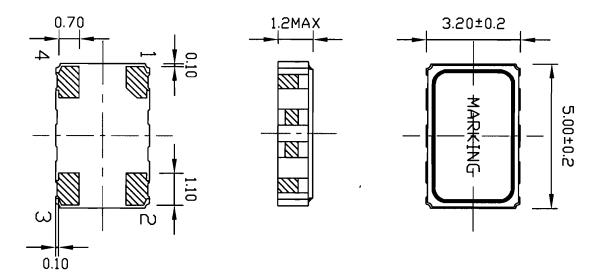


Figure 2. Clipped Sine Wave Output

VCXO Functional Description

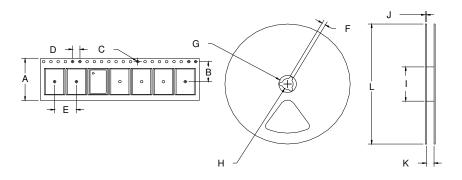

VCXO Feature: The VTC4 can be ordered with a VCXO function for applications where it will be used in a PLL, or the output frequency needs fine tune adjustments. This is a high impedance input, 1 Mohm, and can be driven with an op-amp or terminated with adjustable resistors etc. **Pin 1 should not be left floating** on the VCXO optional devices.

"**No Adjust**" **Feature**: In applications where the VTC4 will not be used in a PLL, or the output frequency does not fine tune adjustments, the best device to use would be a VTC4-x0xx. By using the "no adjust" option, the circuit is simplified as Vc does not need to adjusted or set to a predetermined voltage and **pin 1 should be grounded** (pin 1 can be left open but should not be set to a voltage such as the supply).

Outline Diagrams, Pad Layout and Pin Out

Table 2. Pinout						
Pin #	Symbol	Function				
1	GND or	Ground for a VTC4-x0xx option				
	Vc	or VCXO Control Voltage				
2	GND	Electrical and Case Ground				
3	f _o	Output Frequency				
4	V _{DD}	Supply Voltage				

NOTE: Additional pads are used to program and adjust the TCXO during manufacturing and should be left open; do not terminate these to the supply voltage. Some designs do not include these additional pads.



Contact Pads are gold over nickel Devices will be marked with the frequency

Figure 3, Package drawing

Tape and Reel

Table 3. Tape and Reel Dimensions (mm)													
Tape Dime	Tape Dimensions Reel Dimensions						# Per						
Product	Α	В	С	D	E	F	G	Н	I	J	K	L	Reel
VTC4	16	7.5	1.5	4	8	1.5	20.2	13	60	2	16.4	180	1000

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Table 4. Absolute Maximum Ratings					
Parameter	Symbol	Ratings	Unit		
Storage Temperature	Tstorage	-55/125	°C		

Table 5. Environmental Compliance						
Parameter	Conditions					
Mechanical Shock	MIL-STD-883 Method 2002					
Mechanical Vibration	MIL-STD-883 Method 2007					
Temperature Cycle	MIL-STD-883 Method 1010					
Solderability	MIL-STD-883 Method 2003					
Gross and Fine Leak	MIL-STD-883 Method 1014					
Resistance to Solvents	MIL-STD-883 Method 2015					
Moisture Sensitivity Level	1					
Contact Pads	Gold over Nickel					

Handling Precautions

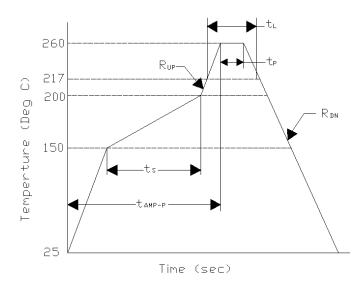

Although ESD protection circuitry has been designed into the the VTC4, proper precautions should be taken when handling and mounting. VI employs a Human Body Model and a Charged-Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance = 1.5kohms and capacitance = 100pF is widely used and therefore can be used for comparison purposes.

Table 6. ESD Ratings						
Model	Minimum	Conditions				
Human Body Model	1500	MIL-STD-883 Method 3115				
Charged Device Model	1000	JESD 22-C101				

Suggested IR profile

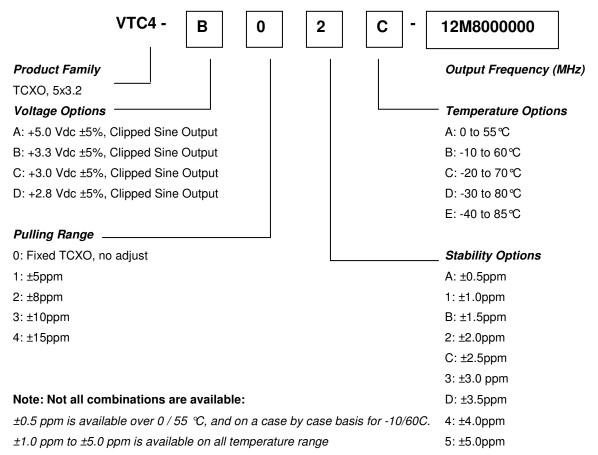

Devices are built using lead free epoxy and can also be subjected to standard lead free IR reflow conditions, Table 7 shows max temperatures and lower temperatures can also be used e.g. peak temperature of 220C.

Table 7. Reflow Profile (IPC/JEDEC J-STD-020)						
Parameter	Symbol	Value				
PreHeat Time	ts	60 sec Min, 180 sec Max				
Ramp Up	R _{UP}	3 °C/sec Max				
Time Above 217 °C	tL	60 sec Min, 150 sec Max				
Time To Peak Temperature	t _{AMB-P}	480 sec Max				
Time At 260 °C (max)	t _P	10 sec Max				
Time At 240 °C (max)	t _{p2}	60 sec Max				
Ramp Down	R _{DN}	6 °C/sec Max				

Ordering Information

Table 8. St	andard Freq	uency List					
10.000	12.504	12.800	13.000	13.568	14.000	14.31818	14.4844
14.7456	15.000	16.000	16.325291	16.367667	16.396	16.800	17.500
18.414	19.200	19.440	19.6608	19.680	19.800	20.000	21.250
23.104	24.000	24.5535	24.576	25.000	25.600	26.000	27.456

www.vectron.com

USA: Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON

EUROPE: Landstrasse, D-74924, Neckarbischofsheim, Germany • Tel: 49 (0) 7268 8010 • Fax: 49 (0) 7268 801281

ASIA: Vectron International • 68 Yin Cheng Road (C), 22nd Floor, One LuJiaZui, Pudong, Shanghai 200120, China •Tel: 8621 61946886 • Fax: 8621 61946699

Feb 26, 2014

Tel: 1-88-VECTRON-1 e-