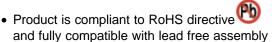


VTC1 series


Voltage Controlled Temperature Compensated Crystal Oscillator

The VTC1, VCTXCO

Features

- Clipped Sine Wave or Square Wave Output
- Output Frequencies to 40 MHz
- Fundamental Crystal Design
- Optional VCXO function available
- Gold over nickel contact pads
- Hermetically Sealed Ceramic SMD package

Applications

- Wireless Communications
- Base Stations
- Point to point radios
- Broadband Access
- Test Equipment
- Handsets

Description

Vectron's VTC1 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, clipped sinewave output or CMOS squarewave, temperature compensated oscillator, operating off either 2.8, 3.0, 3.3 or 5.0 volt supply.

Performance Characteristics

Table 1. Electrical Performance for the	ne Clipped	Sine Wave	Output Opt	ion	
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f _o	10.000		40.000	MHz
Typical Supply Voltage		2.8V,	, 3.0V, 3.3V o	or 5.0V	
Ordering option, see last page					
Supply Current	I _{DD}				mA
10.000 MHz to < 15.000 MHz				1.5	
15.000 MHz to < 26.00 MHz				2.0	
26.000 MHz to 40.000 MHz				2.5	
Output Level ²	Vp/p	0.8			V
Output Load			10K II 10pf		
Control Voltage Impedance	Z _{Vc}	1			Mohm
Control Voltage to reach pull					V
All options (5.0, 3.3,3.0 and 2.8V)		0.5		2.5	
Pull Range	TPR	±5, ±	±8, ±10, ±15 (or ±20	ppm
Ordering option, see last page					
Temperature Stability		±0.5 to ±5.0			ppm
Ordering option, see last page.					
Initial Accuracy, "No Adjust" option				±0.5	ppm
Power Supply Stability				±0.2	ppm
Load Stability				±0.2	ppm
Aging				±1.0	ppm/year
Operating temperature		0/55, -10/6	60, -20/70, -3	0/80, -40/85	°C
Ordering option, see last page					
Phase Noise, 12.800 MHz					dBc/Hz
10 Hz offset			-85		
100 Hz offset			-115		
1 kHz offset			-130		
10 kHz offset			-143		
100 kHz offset			-152		
Start-up time				2	ms

1. A 0.01 uF and a 0.1 uF capacitor should be located as close to the supply as possible (to ground) is recommended.

2. Output is AC coupled.

VTC1 Data sheet

Table 2. Electrical Performance for the	ne CMOS <u>Ou</u>	tput Optior	<u> </u>		
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f _o	10.000		40.000	MHz
Supply Voltage			3.3V±10%		V _{DC}
Maximum Supply Voltage				7	V _{DC}
Supply Current	I _{DD}			10.0	mA
Output Level ²					
Logic High	V _{OH}	0.9^*V_{DD}			V
Logic Low	V _{OL}			0.1*V _{DD}	V
Drive High	I _{ОН}			-4	mA
Drive Low	I _{OL}	4			mA
Output Load			15pf		
Duty Cycle, @ 50%				45/55	%
Control Voltage Impedance	Z _{Vc}	100			Kohm
Control Voltage to reach pull		0.5		2.5	V
Pull Range	TPR	±5, ±8, ±10			ppm
Ordering option, see last page					
Temperature Stability			±0.5 to ±5.0)	ppm
Ordering option, see last page.					
Initial Accuracy, "No Adjust" option				±0.5	ppm
Power Supply Stability				±0.3	ppm
Load Stability				±0.2	ppm
Aging				±1.0	ppm/year
Operating temperature		0/55, -10/6	60, -20/70, -3	0/80, -40/85	°C
Ordering option, see last page					
Phase Noise, 12.800MHz					dBc/Hz
10 Hz offset			-93		
100 Hz offset			-123		
1 kHz offset			-147		
10 kHz offset			-155		
100 kHz offset			-158		
Start-up time				2	ms

1. A 0.01 uF and a 0.1 uF capacitor should be located as close to the supply as possible (to ground) is recommended.

2. Output is DC coupled.

VTC1 Data sheet

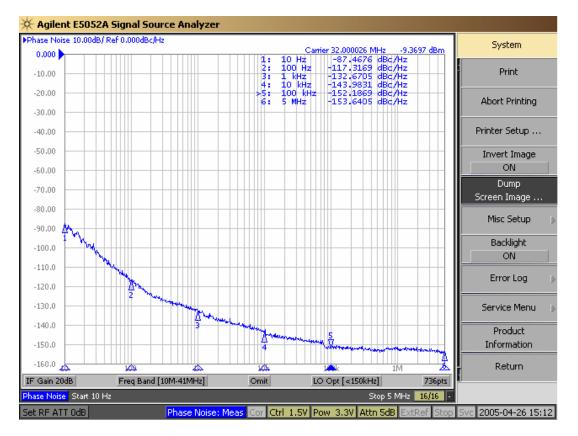


Figure 1. Typical Phase Noise Plot, Clipped Sine Wave

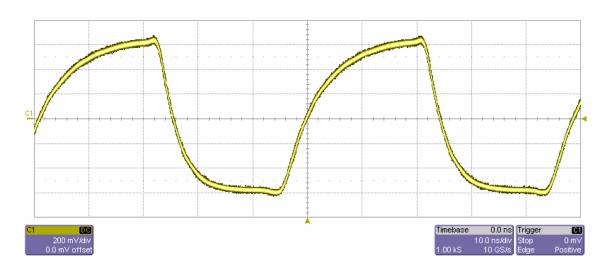
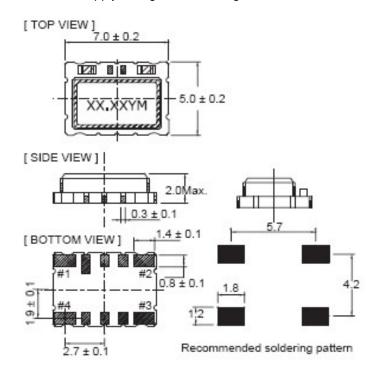


Figure 2. Clipped Sine Wave Output

VCXO Functional Description

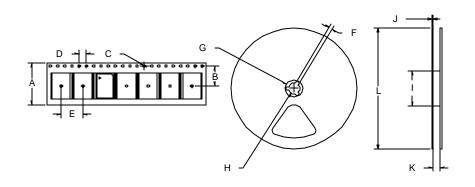

VCXO Feature: The VTC1 can be ordered with a VCXO function for applications were it will be used in a PLL, or the output frequency needs fine tune adjustments. This is high impedance, 1 Mohm, input and can be driven with an op-amp or terminated with adjustable resistors etc. **Pin 1 should not be left floating** on the VCXO optional devices.

"No Adjust" Feature: In applications were the VTC1 will be not be used in a PLL, or the output frequency does not fine tune adjustments, the best device to use would be a VTC1-x0xxx. By using the "no adjust" option, the circuit is simplified as Vc does not need to adjusted or set to a predetermined voltage and **pin 1** should be grounded or left open (but not set to a voltage such as the supply).

Outline Diagrams, Pad Layout and Pin Out

Table 3. Pinout						
Pin #	Symbol	Function				
1	N/C or	No Connect (VTC1-x0xx)				
	Vc	or VCXO Control Voltage				
2	GND	Electrical and Case Ground				
3	f _o	Output Frequency				
4	V _{DD}	Supply Voltage				

NOTE: Additional pads are used to program and adjust the TCXO during manufacturing and should be left open; do not terminate these to the supply voltage. Some designs do not include these additional pads.



Contact Pads are gold over nickel Figure 3, Package drawing

VTC1 Data sheet

Tape and Reel

Table 4. Tape and Reel Dimensions (mm)

Tape Dime	nsions					Reel Dimensions						# Per	
Product	Α	В	С	D	Е	F	G	Н		J	K	L	Reel
VTC1	16	7.5	1.5	4	8	1.5	20.2	13	60	2	16.4	180	1000

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Table 5. Absolute Maximum Ratings						
Parameter	Symbol	Ratings	Unit			
Storage Temperature	Tstorage	-55/125	О°			

Reliability

The VTC1 qualification tests have included:

Table 6. Environnemental Compliance					
Parameter	Conditions				
Mechanical Shock	MIL-STD-883 Method 2002				
Mechanical Vibration	MIL-STD-883 Method 2007				
Temperature Cycle	MIL-STD-883 Method 1010				
Solderability	MIL-STD-883 Method 2003				
Gross and Fine Leak	MIL-STD-883 Method 1014				
Resistance to Solvents	MIL-STD-883 Method 2015				

Handling Precautions

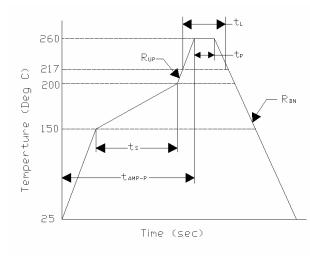

Although ESD protection circuitry has been designed into the the VTC1, proper precautions should be taken when handling and mounting. VI employs a Human Body Model and a Charged-Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance = 1.5kohms and capacitance = 100pF is widely used and therefore can be used for comparison purposes.

Table 7. ESD Ratings		
Model	Minimum	Conditions
Human Body Model	1000	MIL-STD-883 Method 3115
Charged Device Model	1500	JESD 22-C101

Suggested IR profile

Devices are built using lead free epoxy and can also be subjected to standard lead free IR reflow conditions, Table 7 shows max temperatures and lower temperatures can also be used e.g. peak temperature of 220C.

Table 8. Reflow Profile (IPC/JEDEC J-STD-020B)						
Parameter	Symbol	Value				
PreHeat Time	ts	150 sec Min, 200 sec Max				
Ramp Up	R _{UP}	3 °C/sec Max				
Time Above 217 °C	tL	60 sec Min, 150 sec Max				
Time To Peak Temperature	t _{AMB-P}	480 sec Max				
Time At 260 °C (max)	t _P	10 sec Max				
Time At 240 °C (max)	t _{p2}	60 sec Max				
Ramp Down	R _{DN}	6 °C/sec Max				

Tel: 1-88-VECTRON-1

ENT DISTRIBUTORS, INC.

VTC1 Data Sheet

Ordering Information

Table 9. St	andard Frequ	ency List					
10.000	10.0001355	10.001355	10.240	10.245	12.250	11.0592	11.2896
12.000	12.288	12.352	12.500	12.504	12.580	12.582912	12.600
12.688375	12.800	13.000	13.560	14.000	14.318	14.400	14.500
14.5888	14.617188	14.7456	14.850	15.000	15.359865	15.360	16.000
16.034950	16.320	16.3676	16.367667	16.36770	16.384	16.368	16.580
16.777216	16.800	17.500	18.000	18.414	18.432	18.601	19.000
19.200	19.440	19.680	19.800	20.000	20.250	20.480	20.91646
21.250	22.000	22.368	23.090	24.000	24.5535	24.576	24.8064
25.000	25.48828	26.000	32.000	33.000	38.400	40.000	

VTC1 - B 0 2 C	- 10M000
Product Family TCXO, 5x7 Voltage Options A: +5.0 Vdc ±5%, Clipped Sine Output B: +3.3 Vdc ±5%, Clipped Sine Output C: +3.0 Vdc ±5%, Clipped Sine Output D: +2.8 Vdc ±5%, Clipped Sine Output	Output Frequency In MHz Temperature Options A: 0 to 55°C B: -10 to 60°C C: -20 to 70°C D: -30 to 80°C
J: +3.3 Vdc ±10%, CMOS Output Pulling Range 0: Fixed TCXO, no adjust	E: -40 to 85°C Stability Options
1: ±5ppm 2: ±8ppm	A: ±0.5ppm 1: ±1.0ppm
3: ±10ppm 4: ±15ppm 5: ±20ppm	B: ±1.5ppm 2: ±2.0ppm C: ±2.5ppm
Note: Not all combinations are available:	3: ±3.0 ppm D: ±3.5ppm
±0.5 ppm is available over 0 to 55 °C only ±1.0 ppm to ±5.0 ppm is available on all temperature ranges	4: ±4.0ppm 5: ±5.0ppm

www.vectron.com

USA: Vectron International • 267 Lowell Road, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON EUROPE: Landstrasse, D-74924, Neckarbischofsheim, Germany • Tel: 49 (0) 7268 8010 • Fax: 49 (0) 7268 801281 ASIA: Vectron Asia Pacific Sales 1F~2F. No.8 Workshop No.308 Fenju Rd., WaiGaoQiao Free Trade Zone, Pudong New Area Shanghai, China 200131 •Tel: 8621 50480777 • Fax: 8621 50481881

January 10, 2006