TFT COLOR LCD MODULE

NL8060BC31-20

31cm (12.1 Type) SVGA

This DATA SHEET is updated document from DOD-PP-0289(8).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

☆

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic products would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three grades: "Standard", "Special", and "Specific".

Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard is required to contact an NLT sales representative in advance

The **Standard:** Applications as any failure, malfunction or error of the products are free from any damage to death, human bodily injury or other property (Products Safety Issue) and not related the safety of the public (Social Issues), like general electric devices.

Examples: Office equipment, audio and visual equipment, communication equipment, test and measurement equipment, personal electronic equipment, home electronic appliances, car navigation system (with no vehicle control functions), seat entertainment monitor for vehicles and airplanes, fish finder (except marine radar integrated type), PDA, etc.

The **Special:** Applications as any failure, malfunction or error of the products might directly cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and required high level reliability by conventional wisdom.

Examples: Vehicle/train/ship control system, traffic signals system, traffic information control system, air traffic control system, surgery/operation equipment monitor, disaster/crime prevention system, etc.

The **Specific:** Applications as any failure, malfunction or error of the products might severe cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and developed, designed and manufactured in accordance with the standards or quality assurance program designated by the customer who requires extremely high level reliability and quality.

Examples: Aerospace system (except seat entertainment monitor), nuclear control system, life support system, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	
1. OUTLINE	Δ
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATIONS	
1.3 FEATURES.	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 Backlight lamp	
4.3.3 Power supply voltage ripple	
4.3.4 Fuse	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	
4.4.1 LCD panel signal processing board	
4.4.2 Inverter	
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	
4.5.1 LCD panel signal processing board	13
4.5.2 Backlight lamp	
4.5.3 Positions of a plug and a socket	14
4.6 DISPLAY COLORS AND INPUT DATA SIGNALS	15
4.7 DISPLAY POSITIONS	16
4.8 SCANNING DIRECTIONS	16
4.9 INPUT SIGNAL TIMINGS	
4.9.1 Outline of input signal timings	17
4.9.2 Timing characteristics	18
4.9.3 Input signal timing chart	
4.10 OPTICS	
4.10.1 Optical characteristics	
4.10.2 Definition of contrast ratio	
4.10.3 Definition of luminance uniformity	
4.10.4 Definition of response times	
4.10.5 Definition of viewing angles	24
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	
7.2 CAUTIONS	
7.3 ATTENTIONS	
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Other	
8. OUTLINE DRAWINGS	
8.1 FRONT VIEW	
8.2 REAR VIEW	

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL8060BC31-20 is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

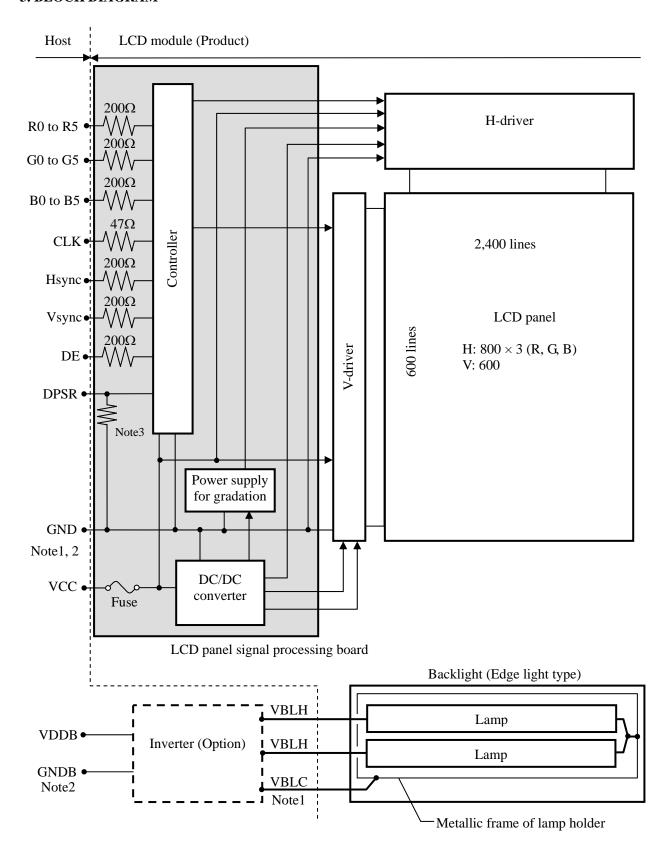
The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

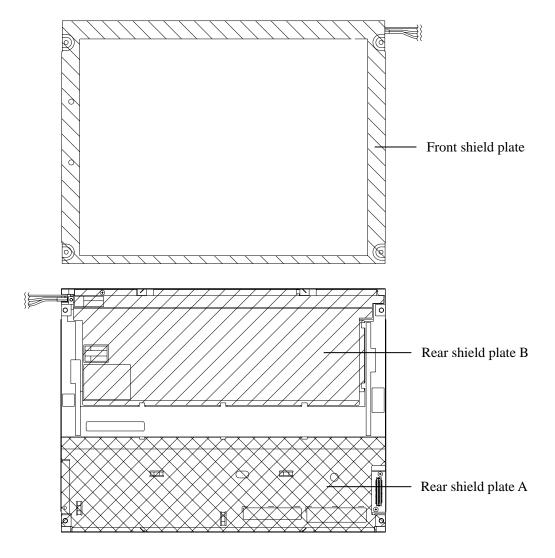
1.2 APPLICATIONS

• For industrial use


1.3 FEATURES

- Wide viewing angle (Adoption of Advanced Super Fine TFT (A-SFT))
- High luminance
- High contrast
- 6-bit digital RGB signals
- Reversible-scan direction
- Edge light type (Without Inverter)
- Replaceable lamp for backlight
- Acquisition product for UL60950-1/CSA-C22.2 No.60950-1-03 (File number: E170632)
- Compliant with the European RoHS directive (2002/95/EC) (From product which was produced after April. 1, 2006)

2. GENERAL SPECIFICATIONS


Display area	246.0 (H) × 184.5 (V) mm					
Diagonal size of display	31cm (12.1 inches)					
Drive system	a-Si TFT active matrix					
Display color	262,144 colors					
Pixel	800 (H) × 600 (V) pixels					
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe					
Dot pitch	$0.1025 \text{ (H)} \times 0.3075 \text{ (V)} \text{ mm}$					
Pixel pitch	0.3075 (H) × 0.3075 (V) mm					
Module size	280.0 (W) × 210.0 (H) × 13.0 (D) mm (typ.)					
Weight	760g (typ.)					
Contrast ratio	400:1 (typ.)					
Viewing angle	 At the contrast ratio ≥ 10:1 Horizontal: Left side 80° (typ.), Right side 80° (typ.) Vertical: Up side 80° (typ.), Down side 80° (typ.) 					
Designed viewing direction	Viewing angle with optimum grayscale (γ≒ 2.2): Normal axis (perpendicular)					
Polarizer surface	Clear					
Polarizer pencil-hardness	3H (min.) [by JIS K5600]					
Color gamut	At LCD panel center 38% (typ.) [against NTSC color space]					
Response time	$Ton + Toff (10\% \longleftrightarrow 90\%)$ 80ms (typ.)					
Luminance	At IBL= 5.0 mArms / lamp 250 cd/m2 (typ.)					
Signal system	6-bit digital signals for data of RGB colors, Dot clock (CLK), Data enable (DE), Horizontal synchronous signal (Hsync), Vertical synchronous signal (Vsync)					
Power supply voltage	LCD panel signal processing board: 3.3V or 5.0V					
	Edge light type: 2 cold cathode fluorescent lamps					
	Replaceable parts • Lamp holder set: Type No. 121LHS16					
Backlight	Recommended inverter (Option) • Inverter: Type No. 104PW191 (Recommended Inverter was changed to 104PW191 from 121PW161 in December 2011.)					
Power consumption	At IBL= 5.0mArms / lamp, Checkered flag pattern 7.0W (typ., Power dissipation of the inverter is not included.)					

3. BLOCK DIAGRAM

Note1: Relations between GND, shield plate and VBLC in the LCD module are as follows.

Front shield plate - Rear shield plate A	Connected
Front shield plate - Rear shield plate B	Not connected
GND - Front shield plate and Rear shield plate A	Not connected
GND - Rear shield plate B	Not connected
VBLC - Front shield plate and Rear shield plate A	Not connected
VBLC - Rear shield plate B	Connected
GND - VBLC	Not connected

Note2: GND and GNDB must be connected to customer equipment's ground, and it is recommended that these grounds are connected together in customer equipment.

Note3: Pull-down resistance of DPSR pin

Power supply voltage	Pull-down resistance of DPSR pin (kΩ)				
VCC	min.	typ.	max.		
at 3.3V	7.5	15	30		
at 5.0V	5.0	10	20		

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	$280.0 \pm 0.5 \text{ (W)} \times 210.0 \pm 0.5 \text{ (H)} \times 13.0 \pm 0.7 \text{ (D)}$	Note1	mm
Display area	246.0 (H) × 184.5 (V)	Note1	mm
Weight	760 (typ.), 800 (max.)		gg

Note1: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parameter	:	Symbol	Rating	Unit	Remarks
Power supply	LCD panel signal processing board		VCC	-0.3 to +6.5	V	
voltage	La	amp voltage Note1	VBLH	2,000	Vrms	T 250G
Input voltage	Dis	splay signals Note2	VD	-0.3 to VCC+0.3	V	Ta= 25°C
for signals	Fu	nction signal Note3	VF	-0.3 to VCC+0.3	V	
	Storage temperature			-20 to +60	°C	
Operating to	maratura	Front surface	TopF	0 to +55	°C	-
Operating ter	perating temperature Rear surface		TopR	0 to +55	°C	
				≤ 95	%	Ta ≤ 40°C
Relative humidity Note4			RH	≤ 85	%	$40 < Ta \le 50^{\circ}C$
				≤ 70	%	50 < Ta ≤ 55°C
Absolute humidity Note4			АН	≤ 73 Note5	g/m ³	Ta > 55°C

Note1: "VBLH" is the voltage value between low voltage terminal (Cold) and high voltage terminal (Hot).

Note2: Display signals are CLK, Hsync, Vsync, DE and DATA (R0 to R5, G0 to G5, B0 to B5).

Note3: Function signal is DPSR.

Note4: No condensation

Note5: Water amount at Ta= 55°C and RH= 70%

4.3 ELECTRICAL CHARACTERISTICS

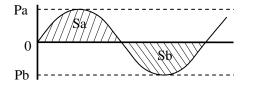
4.3.1 LCD panel signal processing board

 $(Ta=25^{\circ}C)$

Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VCC	3.0	3.3	3.6	V	at VCC= 3.3V
Tower suppry voltage	•	VCC	4.7	5.0	5.3	V	at VCC= 5.0V
Dower supply overant		ICC	-	400 Note1	600	mA	at VCC= 3.3V
Power supply current	•	icc	-	300 Note1	500	mA	at VCC= 5.0V
Logic input voltage for	High	VDLH	0.7VCC	-	VCC	V	
display signals	Low	VDLL	0	-	0.3VCC	V	CMOS level
Input voltage for DPSR	High	VFDH	0.7VCC	1	VCC	V	CIVIOS IEVEI
signal	Low	VFDL	0	-	0.3VCC	V	

Note1: Checkered flag pattern [by EIAJ ED-2522]

4.3.2 Backlight lamp


(Note1)

							()
Parameter	Symbol	Ta	min.	typ.	max.	Unit	Remarks
Lamp starting voltage	VS	0°C	1,200	-	-	Vrms	Note2, Note3,
Lamp starting voltage	VS	25°C	960	-	-	Vrms	Note5, Note8
Lamp voltage	VBLH	25°C	-	600	-	Vrms	Note2, Note3
Lamp current	IBL	25°C	3.0	5.0	5.5	mArms	Note3, Note4
Lamp oscillation frequency	FO	25°C	58	65	69	kHz	Note6

Note1: This product consists of 2 backlight lamps, and these specifications are for each lamp.

Note2: The power supply voltage cycle between lamps should be kept on a same phase. "VS" and "VBLH" are the voltage value between low voltage side (Cold) and high voltage side (Hot).

Note3: The asymmetric ratio of working waveform for lamps (Power supply voltage peak ratio, power supply current peak ratio and waveform space ratio) should be less than 5 % (See the following figure.). If the waveform is asymmetric, DC (Direct current) element apply into the lamp. In this case, a lamp lifetime may be shortened, because a distribution of a lamp enclosure substance inclines toward one side between low voltage terminal (Cold terminal) and high voltage terminal (Hot terminal). When designing the inverter, evaluate asymmetric of lamp working waveform sufficiently.

$$\frac{|Pa - Pb|}{Pb} \times 100 \le 5\%$$

$$\frac{|Sa - Sb|}{|Sb|} \times 100 \le 5\%$$

Pa: Supply voltage/current peak for positive, Pb: Supply voltage/current peak for negative Sa: Waveform space for positive part, Sb: Waveform space for negative part

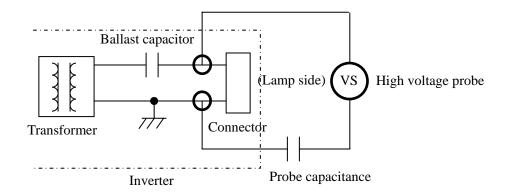
Note4: This product consists of 2 lamps. 2 lamps are contained in the 1 lamp holder, and both lamps are connected to 1 low voltage cable. Recommended lamp current is 5.0mArms typical for each lamp, and sum of 2 lamps is 10mArms typical. The lamp current should be measured by high-frequency current meter at the low voltage terminal.

Note5: The inverter should be designed so that the lamp starting voltage can be maintained for more than 1 second. Otherwise the lamp may not be turned on.

Note6: In case "FO" is not the recommended value, beat noise may display on the screen, because of interference between "FO" and "1/th". Recommended value of "FO" is as following.

$$FO = \frac{1}{4} \times \frac{1}{th} \times (2n-1)$$

th: Horizontal synchronous cycle (See "4.9.2 Timing characteristics".)


n: Natural number (1, 2, 3)

Note7: Method of lamp cable installation may invite fluctuation of lamp current and voltage or asymmetric of lamp working waveform. When designing method of lamp cable installation, evaluate the fluctuation of lamp current, voltage and working waveform sufficiently.

Note8: In case of Inverter with Ballast capacitor, "VS" is the voltage level between Ballast capacitor and Connector (Refer to the below "Example of measurement"). "VS" should be designed to be more than minimum "VS". Otherwise the lamp may not be turned on because the lamp starting voltage is less than minimum "VS".

Example of measurement

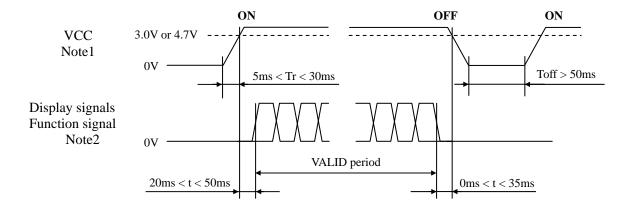
Probe capacitance: 3pF (Tektronix, Inc.: P6015A)

4.3.3 Power supply voltage ripple

This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.

Power sup	ply voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VCC	3.3V	≤ 100	mVp-p
VCC	5.0V	≤ 100	mVp-p

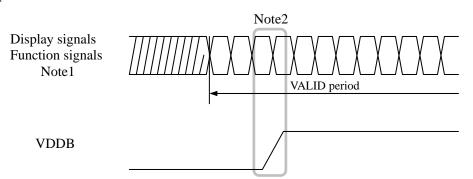
Note1: The permissible ripple voltage includes spike noise.


4.3.4 Fuse

Parameter		Fuse Rating Fusing current		Remarks		
rarameter	Туре	Supplier		rusing current	Kemarks	
VCC	KAB2402162NA31	Matsuo Electric Co., Ltd.	1.6A	3.2A	Note1	
VCC	KAD2402102NA31	Matsuo Electre Co., Etd.	24V	J.2A	Note1	

Note1: The power supply capacity should be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE


4.4.1 LCD panel signal processing board

Note1: In terms of voltage variation (voltage drop) while VCC rising edge is below 3.0V in "VCC= 3.3V" or 4.7V in "VCC= 5.0V", a protection circuit may work, and then this product may not work.

Note2: Display signals (CLK, Hsync, Vsync, DE, DATA (R0 to R5, G0 to G5, B0 to B5)) and function signal (DPSR) must be Low or High-impedance, exclude the VALID period (See above sequence diagram), in order to avoid that internal circuits is damaged. If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. VCC should be cut when the display and function signals are stopped.

4.4.2 Inverter

Note1: These are the display and function signals for LCD panel signal processing board.

Note2: The backlight should be turned on within the valid period of display and function signals, in order to avoid unstable data display.

☆

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): DF9C-41P-1V (2*) (Hirose Electric Co., Ltd. (HRS))

Adaptable plug: DF9-41S-1V (2*), DF9-41S-1V (3*) (Hirose Electric Co., Ltd. (HRS))

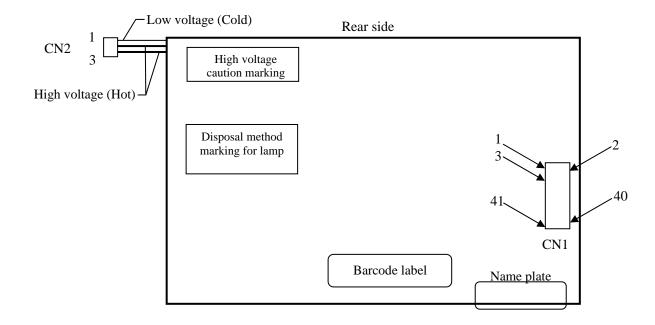
Adaptable			717-413-1 V (3*) (111108C Electric Co., Etd. (11K5))
Pin No.	Symbol	Signal	Remarks
1	GND	Ground	Note1
2	CLK	Dot clock	-
3	GND	Ground	Note1
4	Hsync	Horizontal synchronous signal	
5	Vsync	Vertical synchronous signal	-
6	GND	Ground	
7	GND	Ground	Note1
8	GND	Ground	
9	R0	Red data (LSB)	Least significant bit
10	R1	Red data	
11	R2	Red data	
12	GND	Ground	Note1
13	R3	Red data	
14	R4	Red data	-
15	R5	Red data (MSB)	Most significant bit
16	GND	Ground	
17	GND	Ground	Note1
18	GND	Ground	
19	G0	Green data (LSB)	Least significant bit
20	G1	Green data	
21	G2	Green data	-
22	GND	Ground	Note1
23	G3	Green data	
24	G4	Green data	-
25	G5	Green data (MSB)	Most significant bit
26	GND	Ground	
27	GND	Ground	Note1
28	GND	Ground	
29	B0	Blue data (LSB)	Least significant bit
30	B1	Blue data	_
31	B2	Blue data	
32	GND	Ground	Note1
33	В3	Blue data	_
34	B4	Blue data	
35	B5	Blue data (MSB)	Most significant bit
36	GND	Ground	Note1
37	DE	Selection of DE / Fixed mode	Data enable signal: DE mode High or Open: Fixed mode
38	N. C.	-	Keep this pin Open.
39	VCC	Power supply	Note1
40	VCC	Power supply	
41	DPSR	Selection of scan direction	High: Reverse scan Low or Open: Normal scan Note1
	11 CNID	13/004 1 1 111 1	

Note1: All GND and VCC terminals should be used without any non-connected lines.

Note2: See "4.8 SCANNING DIRECTIONS".

4.5.2 Backlight lamp

Attention: VBLH and VBLC must be connected correctly. Wrong connections will cause electric shock and also break down of the product.


CN2 plug (LCD module side): BHR-03VS-1 (J.S.T Mfg. Co., Ltd.)

Adaptable socket: SM03 (4.0) B-BHS-1-TB (LF) (SN), SM03 (4.0) B-BHS-1-TB

(J.S.T Mfg. Co., Ltd.)

Pin No.	Symbol	Signal	Remarks
1	VBLC	Low voltage (Cold)	Cable color: White
2	VBLH	High voltage (Hot)	Cable color: Pink
3	VBLH	High voltage (Hot)	Cable color: Pink

4.5.3 Positions of a plug and a socket

4.6 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 262,144 colors in 64 gray scales. Also the relation between display colors and input data signals is as the following table.

Display colors						Г	ata s	ignal	l (0: L	ow le	evel,	1: Hi	gh le	vel)					
Display	Colors	R 5	R 4	R 3	R 2	R 1	R 0	G5	G4	G3	G2	G1	G0	В5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
col	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
Basic colors	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
B2	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Red gray scale	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ay	<u> </u>				:					;	:						:		
d gı	\downarrow				:						:			_	_		:	_	
Re	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	ъ 1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sale	dark	0	0	0	0	0	0	0	0	0	0	0 1	1 0	0	0	0	0	0	0
y sc	dark ↑	U	U	U		U	U	U	U	U		1	U	U	U	U		U	U
Green gray scale	j.																		
een	bright	0	0	0	. 0	0	0	1	1	1	1	0	1	0	0	0	. 0	0	0
Gr	origin	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
cale	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ay s	↑				:					:	:						:		
Blue gray scale	\downarrow				:					:							:		
31ue	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
H		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

4.7 DISPLAY POSITIONS

The following table is the coordinates per pixel (See "4.8 SCANNING DIRECTIONS".).

C(0, 0)	C(1, 0)	•••	C(X, 0)	•••	C(798, 0)	C(799, 0)
C(0, 1)	C(1, 1)	•••	C(X, 1)	• • •	C(798, 1)	C(799, 1)
•	•	•	•	•	•	•
•	•	• • •	•	• • •	•	• • •
•	•	•	•	•	•	•
C(0, Y)	C(1, Y)	• • •	C(X, Y)	• • •	C(798, Y)	C(799, Y)
•	•	•	•	•	•	•
•	•	• • •	•	• • •	•	•
•	•	•	•	•	•	•
C(0,598)	C(1,598)	•••	C(X,598)	• • •	C(798,598)	C(799,598)
C(0,599)	C(1,599)	•••	C(X,599)	•••	C(798,599)	C(799,599)

4.8 SCANNING DIRECTIONS

The following figures are seen from a front view. Also the arrow shows the direction of scan.

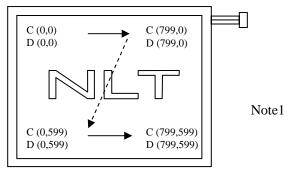


Figure 1. Normal scan (DPSR: Low or Open)

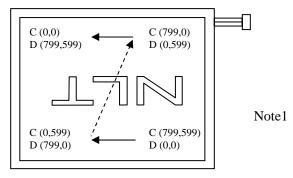
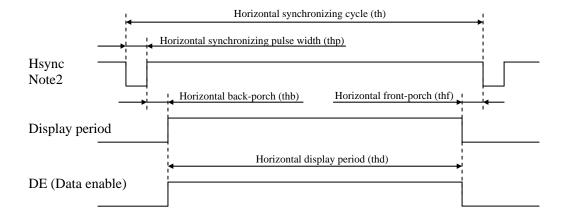


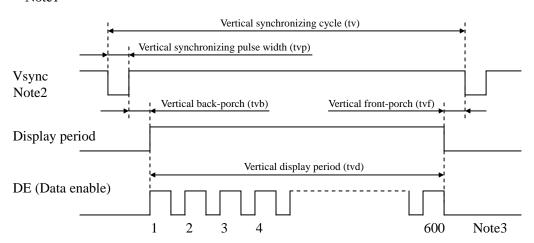
Figure 2. Reverse scan (DPSR: High)

Note1: Meaning of C (X, Y) and D (X, Y)


C (X, Y): The coordinates of the display position (See "**4.7 DISPLAY POSITIONS**".) D (X, Y): The data number of input signal for LCD panel signal processing board

4.9 INPUT SIGNAL TIMINGS

4.9.1 Outline of input signal timings


• Horizontal signal

Note1

• Vertical signal

Note1

Note1: This diagram indicates virtual signal for set up to timing.

Note2: Fixed mode cannot be used while working of DE mode.

Note3: See "4.9.3 Input signal timing chart" for numeration of pulse.

4.9.2 Timing characteristics

(a) Fixed mode

(Note1)

Parameter			Symbol	min.	typ.	max.	Unit	Remarks
	Frequ	iency	1/tc	34.0	38.4	40.0	MHz	26.1 ns (typ.)
CLK	Dı	ıty	tcd	0.4	-	0.6	-	
	Rise time,	, Fall time	terf	-	-	10	ns	-
DATA	CLK-DATA	Setup time	tds	8	-	-	ns	
(R0-R5) (G0-G5)	CLK-DATA	Hold time	tdh	10	-	-	ns	-
(B0-B5)	Rise time	, Fall time	tdrf	-	-	10	ns	
	Су	clo.	th	24.0	26.7	30.1	μs	37.5 kHz (typ.)
	Су	CIE	ui		1,024		CLK	
	Display	period	thd		800		CLK	
	Front-	thf		24	_	CLK	-	
Hsync	Pulse	thp	12	72	-	CLK		
Hsylic	Back-porch		thb	-	128	188	CLK	
	Total of pulse width and back-porch		thp + thb		200		CLK	Note2
	CLK- Hsync	Setup time	ths	8	-	-	ns	
		Hold time	thh	10	-	-	ns	-
	Rise time.	thrf	ı	-	10	ns		
	Cycle		tv	16.0	16.7	18.8	ms	59.9 Hz (typ.)
	Cy	CIC	t v	625			Н	
	Display	period	tvd	600			Н	
	Front-	Front-porch		1		Н	-	
Vsync	Pulse	width	tvp	1	-	2	Н	
V Sylic	Back-	porch	tvb	22	-	23	Н	
	Total of pulse wid	th and back-porch	tvp + tvb		24		Н	Note2
	Vsync-Hsync	Setup time	tvhs	15	-	-	ns	
	v sync-risync	Hold time	tvhh	1	-	-	CLK	-
	Rise time.	tvrf	-	-	10	ns		

Note1: Definition of parameters is as follows.

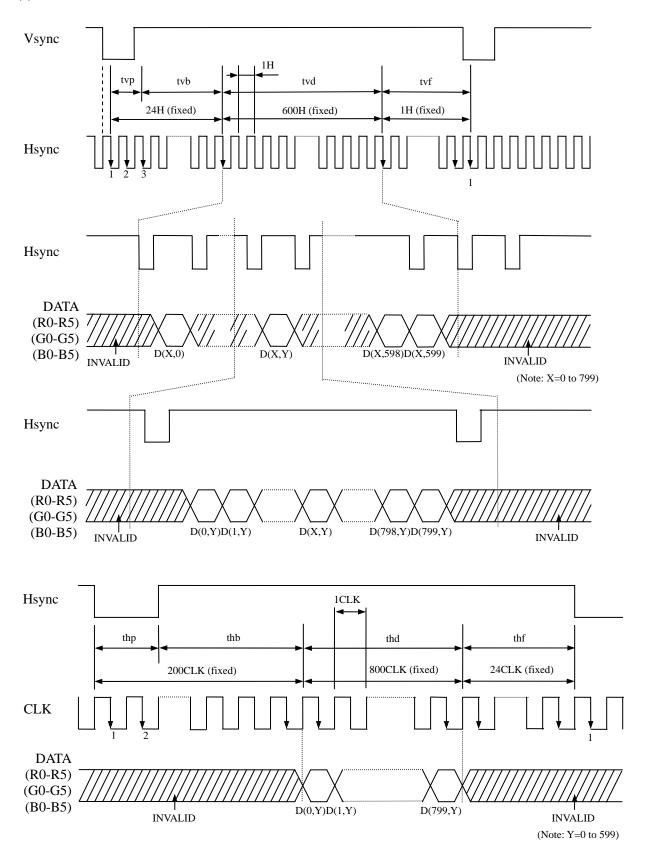
tc= 1CLK, tcd= tch/tc, th= 1H

Note2: Keep tvp + tvb and thp + thb within the table. If it is out of specification, display position will be shifted to right/left side or up/down.

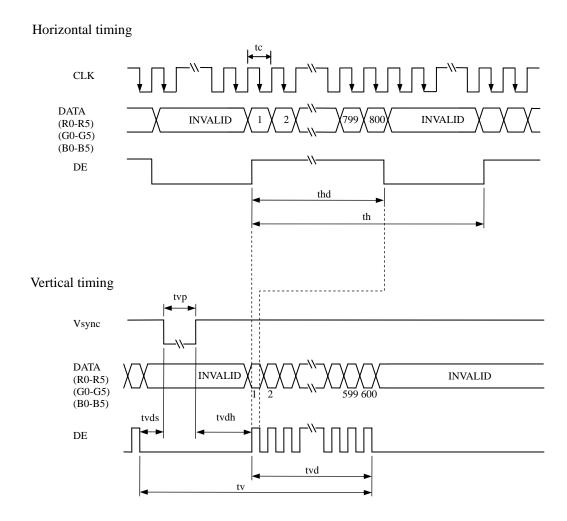
(b) DE mode

(Note1, Note2)

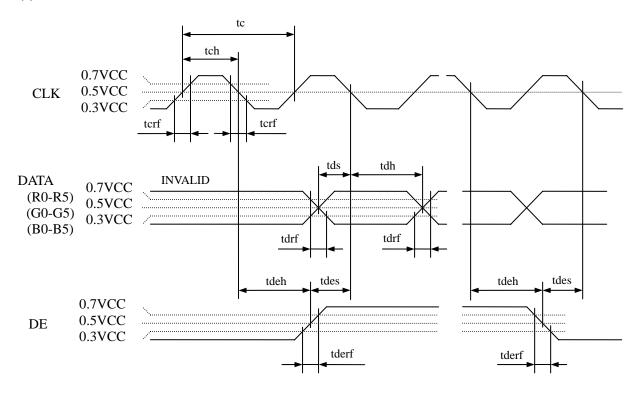
Parameter			Symbol	min.	typ.	max.	Unit	Remarks
	Frequ	1/tc	34.0	38.4	40.0	MHz	26.1 ns (typ.)	
CLK	Du	ty	tcd	0.4	-	0.6	-	
	Rise time,	Fall time	terf	-	-	10	ns	-
DATA	CLK-DATA	Setup time	tds	8	-	-	ns	
(R0-R5) (G0-G5)	CLK-DAIA	Hold time	tdh	10	-	-	ns	-
(B0-B5)	Rise time,	tdrf	-	-	10	ns		
	Pulse	tvp	1	-	2	Н		
Vsync	Vsync-DE	Setup time	tvds	1	-	-	CLK	
V Sylic	v sync-DE	Hold time	tvdh	1	-	-	CLK	-
	Rise time,	tvrf	-	-	10	ns		
		Cycle	th	24.0	26.7	30.1	μs	37.5 kHz (typ.)
	Horizontal	Cycle	ui	829	1,024	-	CLK	
		Display period	thd		800	_	CLK	-
		Cycle	tv	16.0	16.7	18.8	ms	59.9 Hz (typ.)
DE	Vertical (One frame)	Cycle	tv	603	625	-	Н	
	(**************************************	Display period	tvd		600		Н	
	CLK-DE	Setup time	tdes	4	-	-	ns	-
	CLK-DE	Hold time	tdeh	5	-	-	ns	
	Rise time,	Fall time	tderf	-	-	10	ns	

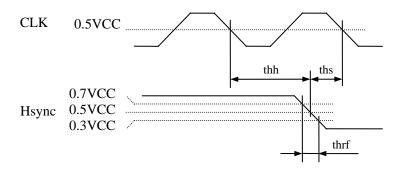

Note1: Definition of parameters is as follows.

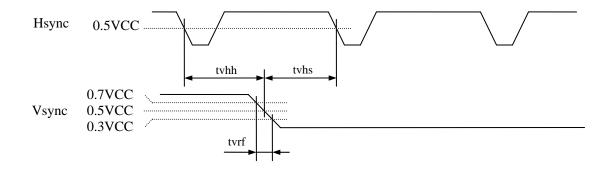
tc= 1CLK, tcd= tch/tc, th= 1H


Note2: Hsync signal (Pin No.4 of CN1) is not used inside the product at DE mode but do not keep pin open to avoid noise problem.

4.9.3 Input signal timing chart


(a) Fixed mode




(b) DE mode

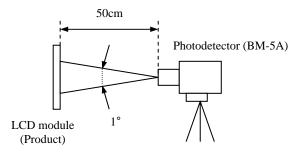
(c) Common item of Fixed mode and DE mode

4.10 OPTICS

4.10.1 Optical characteristics

(Note1, Note2)

Parameter		Condition	Symbol	min.	typ.	max.	Unit	Remarks
Luminance		White at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	L	200	250	_	cd/m ²	-
Contrast ra	ıtio	White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	300	400	-	-	Note3
Luminance uni	formity	White $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	LU	ı	1.25	1.4	-	Note4
	White	x coordinate	Wx	-	0.308	-	-	
	wille	y coordinate	Wy	-	0.351	-	-	
	Red	x coordinate	Rx	-	0.576	-	-	
Chromaticity		y coordinate	Ry	-	0.349	-	-	Note5
Cilibiliaticity	Green	x coordinate	Gx	-	0.329	-	-	
		y coordinate	Gy	-	0.539	-	-	
		x coordinate	Bx	-	0.162	-	-	
	Blue	y coordinate	Ву	-	0.172	-	-	
Color gam	nut	$\theta R=0^{\circ}, \theta L=0^{\circ}, \theta U=0^{\circ}, \theta D=0^{\circ}$ at center, against NTSC color space	С	-	38	-	%	
Response ti	ima	Black to White	Ton	-	40	50	ms	Note6
Kesponse ti	iiie	White to Black	Toff	-	40	50	ms	Note7
	Right	θU= 0°, θD= 0°, CR≥ 10	θR	-	80	-	0	
Viewing angle	Left	θU= 0°, θD= 0°, CR≥ 10	θL	ı	80		0	Note8
viewing angle	Up	θR= 0°, θL= 0°, CR≥ 10	θU	-	80	-	0	Notes
	Down	θR= 0°, θL= 0°, CR≥ 10	θD	-	80	-	0	


Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta= 25°C, VCC= 3.3V, IBL= 5.0mArms/lamp, Display mode: SVGA,

Horizontal cycle= 1/37.5kHz, Vertical cycle= 1/59.9Hz, DPSR= Low or Open: Normal scan

Optical characteristics are measured at luminance saturation after 20minutes from working the product, in the dark room. Also measurement methods are as follows.

Note3: See "4.10.2 Definition of contrast ratio".

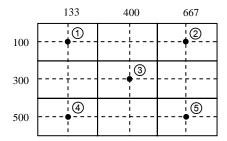
Note4: See "4.10.3 Definition of luminance uniformity".

Note5: These coordinates are found on CIE 1931 chromaticity diagram.

Note6: Product surface temperature: TopF= 25°C Note7: See "**4.10.4 Definition of response times**".

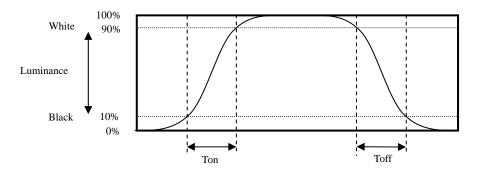
Note8: See "4.10.5 Definition of viewing angles".

4.10.2 Definition of contrast ratio

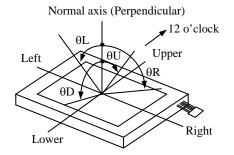

The contrast ratio is calculated by using the following formula.

4.10.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.


$$Luminance \ uniformity \ (LU) = \ \frac{Maximum \ luminance \ from \ \textcircled{1} \ to \ \textcircled{5}}{Minimum \ luminance \ from \ \textcircled{1} \ to \ \textcircled{5}}$$

The luminance is measured at near the 5 points shown below.



4.10.4 Definition of response times

Response time is measured, the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 10% up to 90%. Also Toff is the time it takes the luminance change from 90% down to 10% (See the following diagram.).

4.10.5 Definition of viewing angles

5. ESTIMATED LUMINANCE LIFETIME

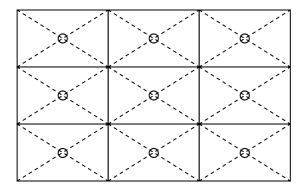
☆

The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

	Condition	Luminance lifetime (MTTF) Note1, Note2	Unit
Module	25°C (Ambient temperature of the product) Continuous operation, IBL= 5.0mArms/lamp	40,000	h
Module	55°C (Surface temperature at screen center) Continuous operation, IBL= 5.0mArms/lamp	25,000	h
Cold cathode fluorescent lamp	25°C (Ambient temperature of the lamp) Continuous operation, IBL= 5.0mArms	50,000	h

Note1: MTTF is mean time to half-luminance.


Note2: In case the product works under low temperature environment, the lifetime becomes short.

6. RELIABILITY TESTS

Test item	Condition	Judgment Note1
High temperature and humidity (Operation)	① 60 ± 2°C, RH= 60%, 240hours ② Display data is white.	
Heat cycle (Operation)	① 0 ± 3°C1hour 55 ± 3°C1hour ② 50cycles, 4 hours/cycle ③ Display data is white.	
Thermal shock (Non operation)	 -20 ± 3°C30minutes 60 ± 3°C30minutes 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 	No display malfunctions
ESD (Operation)	 150pF, 150Ω, ±10kV 9 places on a panel surface Note2 10 times each places at 1 sec interval 	
Dust (Operation)	 ① Sample dust: No. 15 (by JIS-Z8901) ② 15 seconds stir ③ 8 times repeat at 1 hour interval 	
Vibration (Non operation)	 5 to 100Hz, 19.6m/s² 1 minute/cycle X, Y, Z directions 120 times each directions 	No display malfunctions No physical damages
Mechanical shock (Non operation)	 539m/ s², 11ms ±X, ±Y, ±Z directions 5 times each directions 	110 physical damages

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points.

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS", after understanding these contents!

This sign has the meaning that customer will be injured by himself or the product will sustain a damage, if customer has wrong operations.

This sign has the meaning that customer will get an electrical shock, if customer has wrong operations.

This sign has the meaning that customer will be injured by himself, if customer has wrong operations.

7.2 CAUTIONS

* Do not touch the working backlight. There is a danger of an electric shock.

- * Do not touch the working backlight. There is a danger of burn injury.
- * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 539m/s^2 and equal to or no greater than 11 ms, Pressure: Equal to or no greater than 19.6 N ($\phi 16 \text{mm jig}$))

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② Do not hook nor pull cables such as lamp cable, and so on, in order to avoid any damage.
- 3 When the product is put on the table temporarily, display surface must be placed downward.
- 4 When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- (5) The torque for product mounting screws must never exceed 0.294N·m. Higher torque might result in distortion of the bezel.
- ⑤ The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.
- ② Do not press or rub on the sensitive product surface. When cleaning the product surface, wipe it with a soft dry cloth.
- On not push nor pull the interface connectors while the product is working.

☆

- Do not bend or unbend the lamp cable at the near part of the lamp holding rubber, to avoid the damage for high voltage side of the lamp.
- Properly connect the plug (backlight side) to adaptable socket (inverter side) without incomplete connection. After connecting, be careful not to hook the lamp cables because incomplete connection may occur by hooking the lamp cables. This incomplete connection may cause abnormal operation of high voltage circuit.
- ① If the lamp cable is attached on the metal part of the product directly, high frequency leak current to the metal part may occur, then the brightness may decrease or the lamp may not be turned on.
- [®] When not connecting shield plate of the LCD module to the customer's equipment ground, inverter noise may create video noise on the LCD screen.
- [®] When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- (4) Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal for the worst, please wash it out with soap.

7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurring by temperature difference, the product packing box should be opened after enough time being left under the environment of an unpacking room. Evaluate the leaving time sufficiently because a situation of dew condensation occurring is changed by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with packing state)
- 3 Do not operate in high magnetic field. Circuit boards may be broken down by it.
- ④ This product is not designed as radiation hardened.

7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flicker, vertical seam or small spot may be observed depending on display patterns.
- ③ Optical characteristics (e.g. luminance, display uniformity, etc.) gradually is going to change depending on operating time, and especially low temperature, because the LCD has cold cathode fluorescent lamps.
- 4 Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- ⑤ The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- **⑤** Optical characteristics may be changed depending on input signal timings.
- The interference noise between input signal frequency for this product's signal processing board and luminance control frequency of the inverter may appear on a display. Set up luminance control frequency of the inverter so that the interference noise does not appear.
- After the product is stored under condition of low temperature or dark place for a long time, the cold cathode fluorescent lamp may not be turned on under the same condition because of the general characteristic of cold cathode fluorescent lamp. In addition, when Luminance control ratio is low in pulse width modulation method inverter, the lamp may not be turned on. In this case, power should be supplied again.

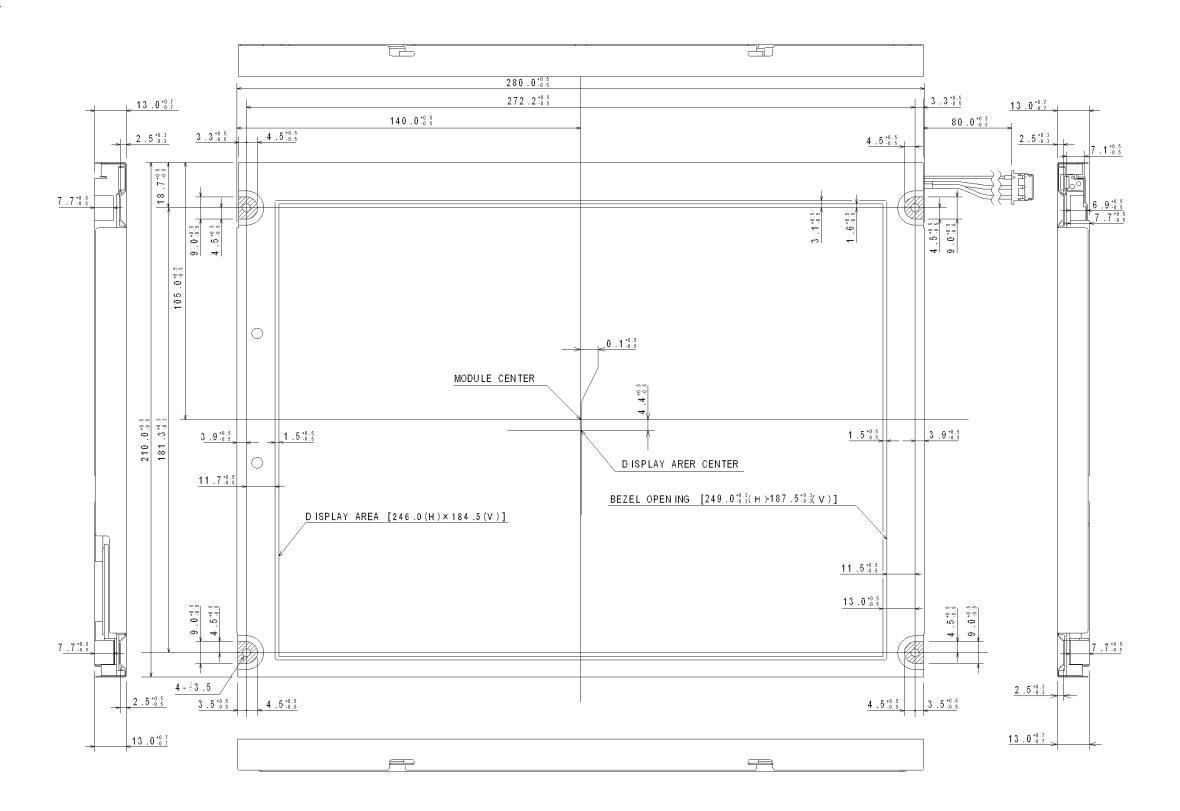
☆

☆

7.3.4 Other

- ① All GND and VCC terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistor.
- $\ensuremath{ \mathfrak{S}EPLACEMENT\ MANUAL\ FOR\ LAMP\ HOLDER\ SET",\ when\ replacing\ backlight\ lamps.}$
- 4 Pack the product with original shipping package, in order to avoid any damages during transportation, when returning the product to NLT for repair and so on.

	China RoHS directive six hazardous substances or elements								
Lea (Pb		Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr VI)	Polybrominated Biphenys (PBB)	Polybrominated Biphenyl Ethers (PBDE)			
×		×	0	0	0	0			

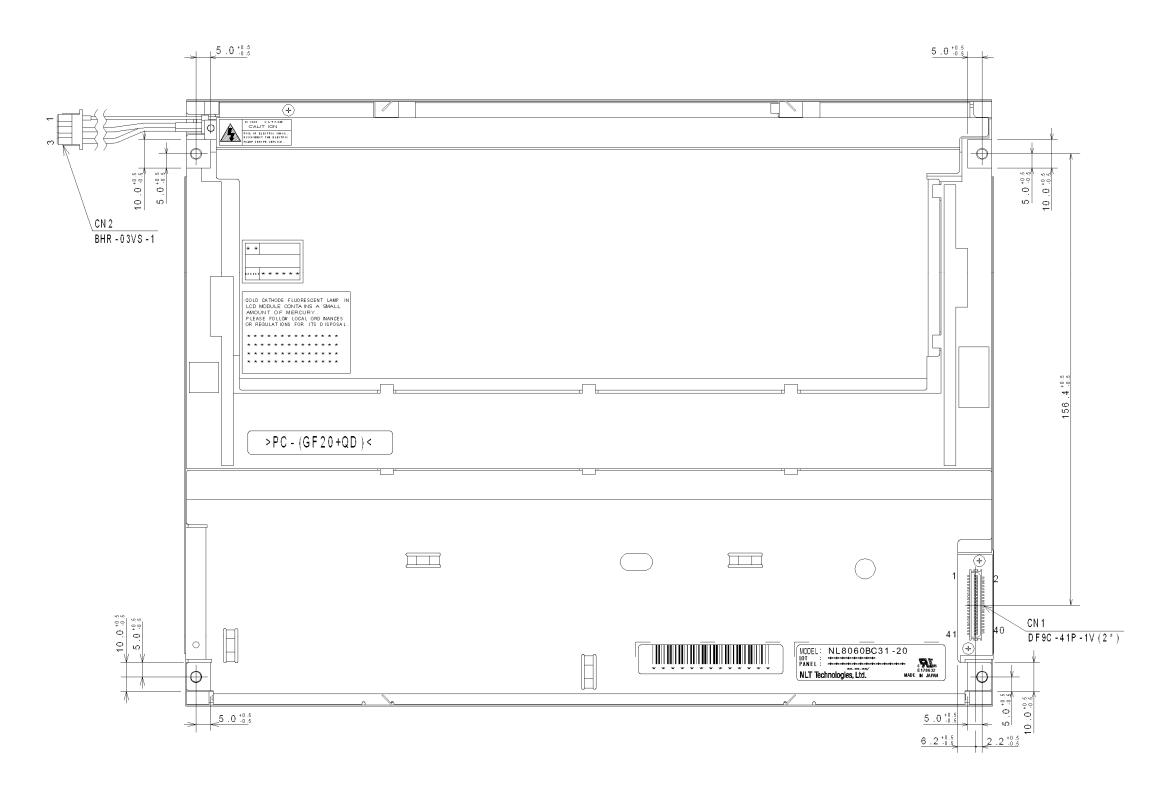

Note1: (): This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of SJ/T11363-2006 standard regulation.

X: This indicates that the poisonous or harmful material in all the homogeneous materials for this part is above the limitation level of SJ/T11363-2006 standard regulation.

NLT Technologies, Ltd. NL8060BC31-20

8. OUTLINE DRAWINGS

8.1 FRONT VIEW


Unit: mm

Note1: The torque for product mounting screws must never exceed 0.294N·m.

Note2: Mounting hole portions (4 pieces)

NLT Technologies, Ltd.

8.2 REAR VIEW

Note1: The torque for product mounting screws must never exceed $0.294 N \cdot m$.

Unit: mm