TFT COLOR LCD MODULE

NL2432HC22-40J

8.9cm (3.5 Type) QVGA

DATA SHEET = DOD-PP-1297 (6th edition)

This DATA SHEET is updated document from DATA SHEET DOD-PP-0782(5).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "**Standard**", "**Special**", and "**Specific**" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NLT sales representative in advance.

The **Standard** quality grade applies to the products developed, designed and manufactured in accordance with the NLT standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The **Special** quality grade applies to the products developed, designed and manufactured in accordance with an NLT quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The **Specific** quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
1. OUTLINE	
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATION	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	
4.5 SETTING OF THE INTERNAL REGISTER	
4.6 INTERFACE PIN CONNECTIONS	
4.7 DISPLAY COLORS AND INPUT DATA SIGNALS	
4.8 DISPLAY POSITIONS	
4.9 SCANNING DIRECTIONS	
4.10 INPUT SIGNAL TIMINGS	
4.10.1 RGB interface (Ta= 25°C, VCC= 3.0V)	
4.10.2 Serial interface (Ta= 25°C, VCC= 3.0V)	
4.11 OPTICAL CHARACTERISTICS	
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS	
7.2 CAUTIONS	
7.3 ATTENTIONS	
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Other	
8. OUTLINE DRAWINGS	.28

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL2432HC22-40J is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a controller, and sent to the driver LSIs which drive the individual TFT arrays.

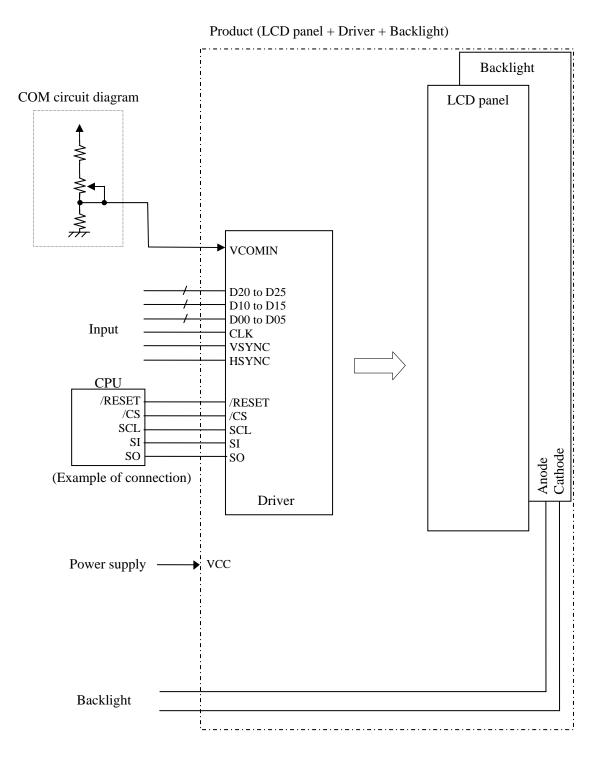
The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

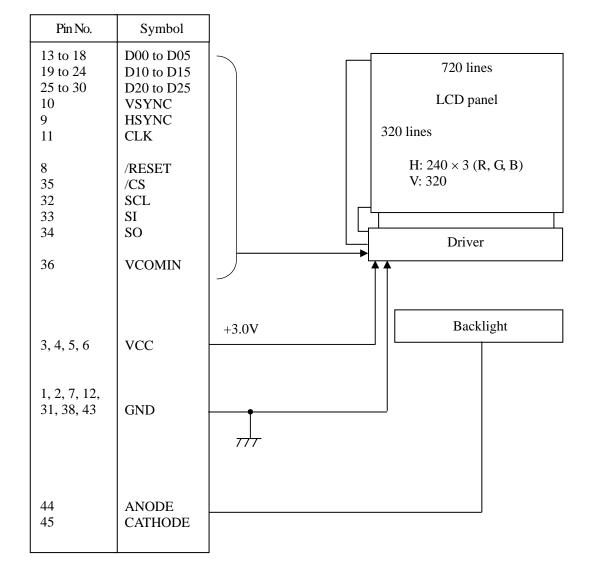
• PDAs

1.3 FEATURES

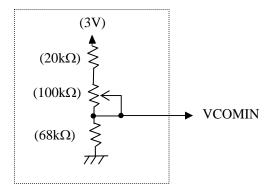
- Adoption of SR-NLT (Super-Reflective Natural Light TFT) (Transflective type)
- Backlight attached
- High luminance
- High contrast
- Including LCD controller and power supply
- 6-bit digital RGB signals
- Compliant with the European RoHS directive (2002/95/EC)


2. GENERAL SPECIFICATIONS

Display area	53.64 (H) × 71.52 (V) mm				
Diagonal size of display	8.9cm (3.5 inches)				
Drive system	a-Si TFT active matrix				
Display color	262,144 colors				
Pixel	$240 (H) \times 320 (V)$ pixels				
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe				
Dot pitch	$0.0745 (H) \times 0.2235 (V) mm$				
Pixel pitch	$0.2235 (H) \times 0.2235 (V) mm$				
Module size	63.5 (H) × 85.0 (V) × 3.0 (D) mm (typ.)				
Weight	25 g (typ.)				
Polarizer surface	Clear				
Polarizer pencil-hardness	3H (min.) [by JIS K5600]				
Luminance	$\begin{array}{l} At IL = 13mA \\ 220 \text{cd/m}^2 \text{ (typ.)} \end{array}$				
Reflection ratio	15% (typ.)				
Contrast ratio	At transmissive mode, IL= 13mA 150:1 (typ.)				
Comrasi rano	At reflective mode 15:1 (typ.)				
Response time	$Ton+Toff (10\% \leftrightarrow 90\%)$ 30 ms (typ., at transmissive mode)16 ms (typ., at reflective mode)				
Designed viewing direction	Viewing direction without image reversal: down side (6 o'clock)				
Signal system	6-bit digital signals for data of RGB colors, Dot clock (CLK), Horizontal synchronous signal (HSYNC), Vertical synchronous signal (VSYNC), Serial interface signals (/CS, SCL, SI, SO)				
Supply voltage	VCC: 3.0V (typ.)				
Power consumption	LCD panel: 50mW (typ.) Backlight: 186mW (typ., at IL=13mA)				


☆ ☆

☆

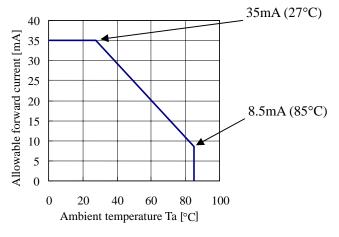

3. BLOCK DIAGRAM

FPC I/F

Reference design of COM circuit

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS


Parameter	Specification			
Module size	$63.5 \pm 0.3 \text{ (W)} \times 85.0 \pm 0.3 \text{ (H)} \times 3.0 \pm 0.2 \text{ (D)}$	Note1	mm	
Display area	53.64 (H) × 71.52 (V)	Note1	mm	
Weight	25 (typ.), 28 (max.)		g	

Note1: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parameter	Symbol	Rating	Unit	Remarks
Supply volt	age	VCC	-0.5 to +3.5	V	Ta= 25°C
Logic input	voltage	VI	-0.5 to VCC+0.5	V	Logic signals
	Reverse voltage	VR	≤ 25	V	
	Power dissipation	PD	≤ 575	mW	Ta= 25°C
Backlight	Forward current	IL	Note1	mA	
	Pulse forward current	IFP	100	mA	Pulse width ≤ 10 ms, Duty $\leq 1/10$
Storage temperature		Tst	-20 to +70	°C	-
Operating to	emperature	Тор	-20 to +70	C	Product surface Note2
			≤ 95		$Ta \le 40^{\circ}C$
Relative hu	midity Note3	RH	≤ 85	%	$40^{\circ}\text{C} < \text{Ta} \le 50^{\circ}\text{C}$
	Totes		≤ 70		$50^{\circ}\text{C} < \text{Ta} \le 55^{\circ}\text{C}$
Absolute hu	umidity Note3	AH	≤ 73 Note4	g/m ³	$Ta > 55^{\circ}C$
Storage altit	tude		≤ 13,600	m	$-20^{\circ}C \le Ta \le 70^{\circ}C$
Operating a	ltitude		≤ 4,850	m	$-20^{\circ}C \leq Ta \leq 70^{\circ}C$

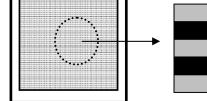
Note1: Allowable forward current

Note2: Measured at display area Note3: No condensation Note4: Water amount at Ta= 55°C and RH= 70%

 $(Ta=25^{\circ}C)$

(1) Logic/ LCD driving

NLT Technologies, Ltd.


4.3 ELECTRICAL CHARACTERISTICS

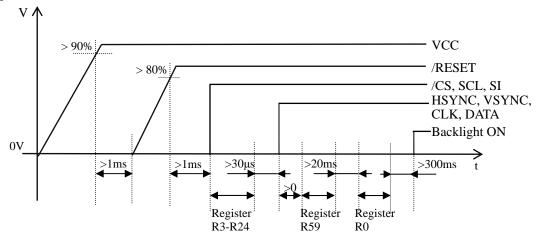
Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Logic supply voltage	VCC	2.85	3.0	3.15	V	-	
Logic input high voltage	VIH	0.8VCC	-	VCC	V	Logic signal	
Logic input low voltage	VIL	0	-	0.2VCC	V		
COM high voltage	COM/H	-	1.8	-	V	at VCC= 3.0V Note1	
VCC supply current	ICC	-	16.5	26	mA	at VCC= 3.0V Note2	

Note1: The optimum value for COM/H is in the range of 1.3 V to 2.3 V. The optimum COM/H is different each product.

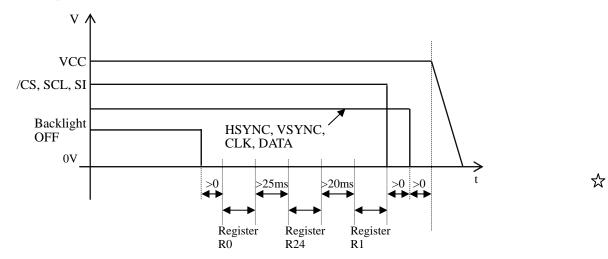
Recommended adjustment display for COM/H

The figure is every one line

Half tone display (32/63 gray scale) Full black display (0/63 gray scale) Half tone display (32/63 gray scale) Full black display (0/63 gray scale) Half tone display (32/63 gray scale)


Note2: CLK= 5.0MHz, HSYNC= 19.53kHz, VSYNC= 60Hz, Checkered flag pattern (by EIAJ ED-2522)

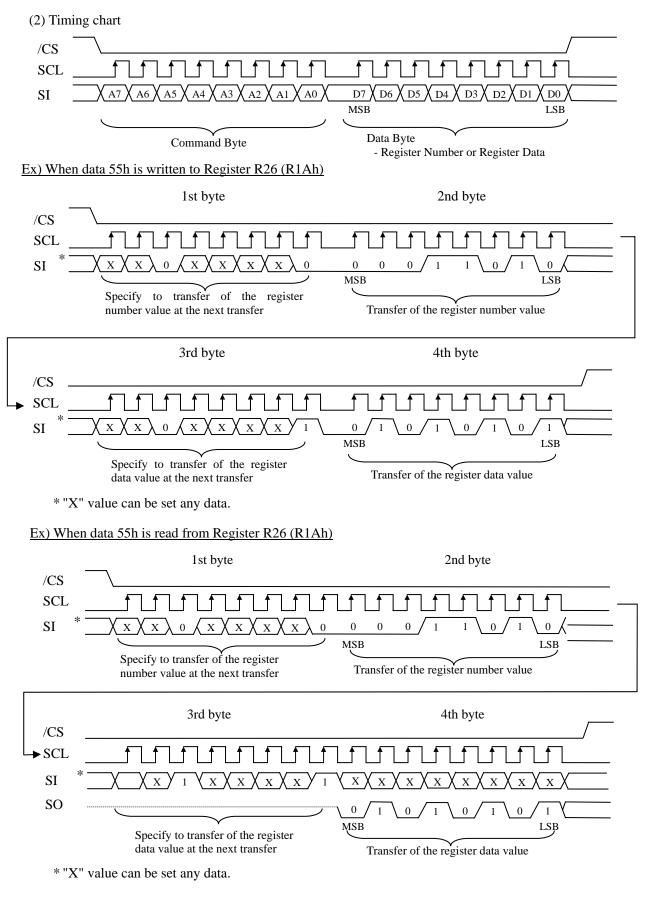
(2)	Backligh	nt
-----	----------	----


						(1a = 25 C)	_
Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Forward Current	IL	-	13	14	mA	-	7
Forward Voltage	VL	-	14.3	15.5	V	at IL= 13mA	7

4.4 POWER SUPPLY VOLTAGE SEQUENCE

(1) Power On sequence

(2) Power Off sequence



4.5 SETTING OF THE INTERNAL REGISTER

Initially, the internal register of driver is undefined. Therefore, the following procedure is required. After initialization is done by the /REST pin, the register must be written using /CS, SCL and SI pins. To check or confirm the written register data, you can read it using SO pin. The setting method is as follows.

e i unetion	
Functions	Discription
-	-
_	_
Read / Write	0:Write 1:Read
-	-
-	-
-	-
-	-
Register Number / Data	0:Register Number 1:Register Data
	Functions Read / Write

(1) Command Byte Function

Note1: During 32-bit transfer of the Register Data, /CS pin (Pin No.35) must be maintained active.

NL2432HC22-40J

(3) Command sequence

①Power On

Sequence	Register Number	Data	Comment	Sequence	Register Number	Data	Comment
1	Power On			26	R76	01h	-
2	1ms min. w	ait.		27	R77	01h	-
3	Reset by the	e /RESET pi	n (Pin No. 8).	28	R80	00h	-
4	1ms min. w	ait after /RE	SET↑.	29	R81	00h	-
5	R3	01h	-	30	R82	2Eh	-
6	R1	00h	-	31	R83	C4h	-
7	R100	0Fh	-	32	R86	15h	-
8	R101	3Fh	-	33	R87	EDh	-
9	R102	3Fh	-	34	R95	3Fh	-
10	R103	00h	-	35	R96	22h	-
11	R104	00h	-	36	R25	76h	-
12	R105	30h	-	37	R26	54h	-
13	R106	04h	-	38	R27	67h	-
14	R107	37h	-	39	R28	60h	-
15	R108	17h	-	40	R29	04h	
16	R109	00h	-	41	R30	1Ch	-
17	R110	40h	-	42	R31	A9h	-
18	R111	30h	-	43	R32	00h	-
19	R112	04h	-	44	R33	20h	-
20	R113	37h	-	45	R24	77h	-
21	R114	17h	-	46	30 µs min	. wait.	
22	R115	00h	-	47	Data input	start	
23	R116	40h	-	48	R59	01h	-
24	R2	40h	-	49	20 ms min	. wait.	
25	R75	04h	-	50	R0	00h	49

②Power Off

Sequence	Register Number	Data	Comment			
1	R0	08h	-			
2	25 ms min. wait.					
3	R24	00h	-			
4	20 ms min	20 ms min. wait.				
5	R1	08h	-			
6	Data Off					
7	Power Off					

③Standby

Sequence	Register Number	Data	Comment		
1	R0	08h	-		
2	25 ms min. wait.				
3	R24	00h	-		
4	20 ms min. wait.				
5	R1	08h	-		

④Wake Up

Sequence	Register Number	Data	Comment
1	R1	00h	-
2	R24	FFh	-
3	30 µs min	. wait.	
4	R0	00h	-

Note1: Be sure to perform reset by the /RESET pin (Pin No. 8) every power-on Note2: Write the Register Data every power-on, because the data are not stored in the product.

4.6 INTERFACE PIN CONNECTIONS

CN1 (FPC)

Adaptable socket: FH23-45S-0.3SHW(05) (Hirose Electric Co., Ltd.(HRS))

Pin No.	Symbols	Functio	ons	Pin No.	Symbols	Function	S	
1	GND	Ground	Note1	25	D20	Red data (LSB)		
2	GND	Ground	Note1	26	D21	Red data		
3	VCC			27	D22	Red data		
4	VCC	Power supply	Note1	28	D23	Red data		
5	VCC	rower suppry	Note1	29	D24	Red data		
6	VCC			30	D25	Red data (MSB)		
7	GND	Ground	Note1	31	GND	Ground	Note1	
8	/RESET	Reset		32	SCL	Serial clock		
9	HSYNC	Horizontal synchron	nous signal	33	SI	Serial input		
10	VSYNC	Vertical synchronou	s signal	34	SO	Serial output		
11	CLK	Dot clock		35	/CS	Chip selection		
12	GND	Ground	Note1	36	VCOMIN	COM high voltage input		
13	D00	Blue data (LSB)		37	N. C.	Keep this pin Open.		
14	D01	Blue data		38	GND	Ground	Note1	
15	D02	Blue data		39	N. C.			
16	D03	Blue data		40	N. C.	Keep this pin Open.		
17	D04	Blue data		41	N. C.	Keep uns pin Open.		
18	D05	Blue data (MSB)		42	N. C.			
19	D10	Green data (LSB)		43	GND	Ground	Note1	
20	D11	Green data		44	ANODE	LED voltage (Anode)		
21	D12	Green data		45	CATHODE	LED voltage (Cathod	e)	
22	D13	Green data						
23	D14	Green data		1				
24	D15	Green data (MSB)]				

Note1: All GND terminals should be used without any non-connected lines.

Note2: Do not fold the FPC. When folding the FPC, pattern disconnection may occur. In case of bending FPC, the minimum curvature (R) must be more than 1.0 mm.

Description of terminals

Terminals	Description
/RESET	When /RESET is L, an internal reset is performed. The reset operation is executed at the /RESET signal level. Be sure to perform reset by this pin every power-on.
/CS	This pin is used for chip selection signals. When /CS= L, the chip is active and can perform data I/O operations including command and data I/O.
SCL	This pin is clock input of serial interface.
SI	This pin is data input of serial interface.
SO	This pin is data output of serial interface.
VCOMIN	This pin is the Common high voltage. The voltage needs to be adjusted. See " 3 BLOCK DIAGRAM - Reference design of COM circuit ".
ANODE, CATHODE	Refer to the below "Circuits of backlight".

Anode 5 5 Cathode

Circuits of backlight

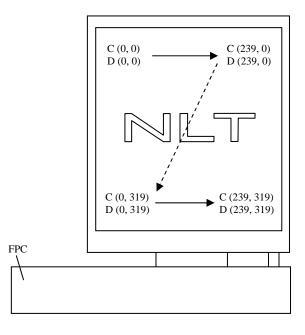
NL2432HC22-40J

NLT Technologies, Ltd.

4.7 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 262,144 colors in 64 gray scales. Also the relation between display colors and input data signals is as the following table.

Display colors							Data				leve	l, 1: F	ligh le	evel)					
Dispi	ay colors	D25	D24	D23	D22	D21	D00	D15	D14	D13	D12	D11	D10	D05	D04	D03	D02	D01	D00
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic colors	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
Isic	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
${ m B}_{i}$	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ay s	\uparrow			:	:						:						:		
Red gray scale	\downarrow			:	:						:						:		
Red	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
sci	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
ray	↑			:	:						:								
Green gray scale	\downarrow			:	:						:								
jree	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
Ŭ		0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
sca	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ay	\uparrow			:	:						:								
e gi	\downarrow			:													•		
Blue gray scale	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1


4.8 DISPLAY POSITIONS

The following table is the coordinates per pixel (See figure of "4.9 SCANNING DIRECTIONS".).

(C (0, 0)	C (1,	0)				
R	G	B R G	В				
		1					
C	0, 0)	C(1, 0)	•••	C(X, 0)	•••	C(238, 0)	C(239, 0)
C(0, 1)	C(1, 1)	•••	C(X, 1)	•••	C(238, 1)	C(239, 1)
	•	•	•	•	٠	•	•
	•	•	•••	•	•••	•	•••
C(0, Y)	C(1, Y)	•••	C(X, Y)	•••	C(238, Y)	C(239, Y)
	•	•	•	•	•	•	•
	•	•	•••	•	•••	•	•
C(0, 318)	C(1, 318)	•••	C(X, 318)	•••	C(238, 318)	C(239, 318)
C(0, 319)	C(1, 319)	•••	C(X, 319)	•••	C(238, 319)	C(239, 319)

4.9 SCANNING DIRECTIONS

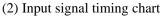
The following figures are seen from a front view. Also the arrow shows the direction of scan.

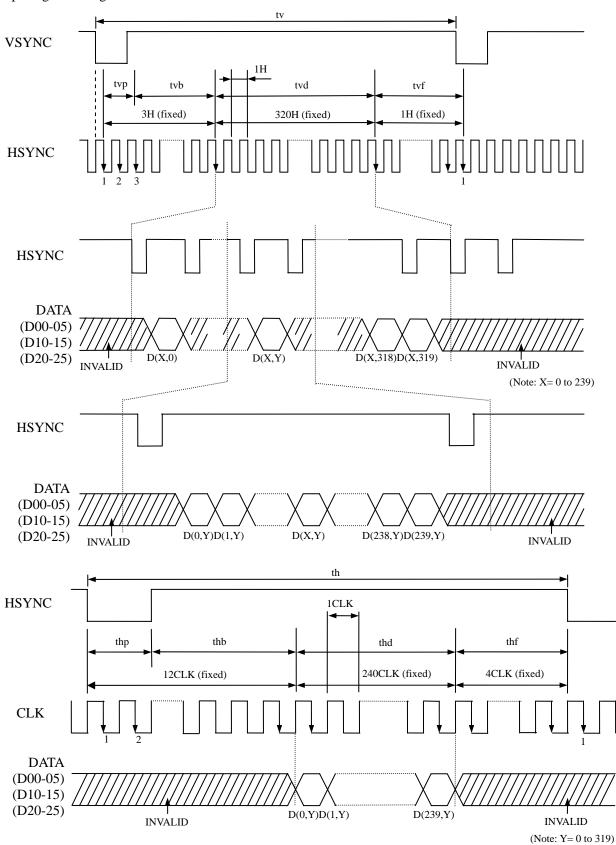
Note1: Meaning of C (X, Y) and D (X, Y)

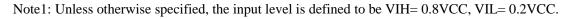
C (X, Y): The coordinates of the display position (See "**4.8 DISPLAY POSITIONS**".) D (X, Y): The data number of input signal for LCD panel

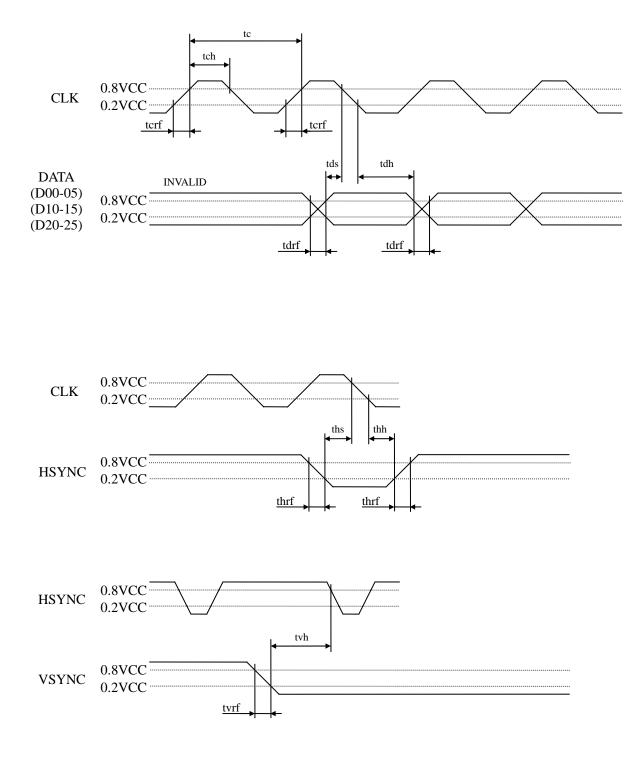
4.10 INPUT SIGNAL TIMINGS

4.10.1 RGB interface (Ta= 25°C, VCC= 3.0V)

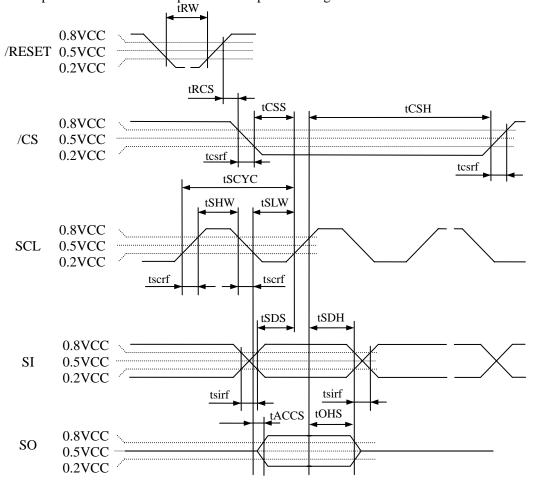

(1) Timing characteristics

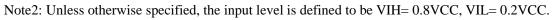

	Parameter		Symbol	min.	typ.	max.	Unit	Remarks
	Frequency		1/tc	4.81	5.0	5.12	MHz	200 ns (typ.)
CLK	Duty		tcd	0.4	0.5	0.6	-	
	Rise time, Fall	time	tcrf	-	-	15	ns	-
DATA	CLK-DATA	Setup time	tds	15	-	-	ns	
(D00-05) (D10-15)	CLK-DAIA	Hold time	tdh	15	-	-	ns	-
(D20-25)	Rise time, Fall	time	tdrf	-	-	15	ns	
	Cycle		th	50.0	51.2	53.2	μs	19.53 kHz (typ.)
	Cycle		ui		256		CLK	
	Display period		thd		240		CLK	
	Front-porch		thf	4		CLK		
HSYNC	Pulse width		thp	2	8	-	CLK	
	Back-porch		thb		4		CLK	_
	CLK-	Setup time	ths	15	-	-	ns	
	HSYNC	Hold time	thh	15	-	-	ns	
	Rise time, Fall	time	thrf	-	-	15	ns	
	Cycle		tv	16.2	16.59	17.24	ms	60 Hz (typ.)
	Cycle		ιv		324		Н	
	Display period		tvd		320		Н	
VSYNC	Front-porch		tvf		1		Н	
VOINC	Pulse width		tvp	1	2	-	Н	-
	Back-porch		tvb		1		Н	
	VSYNC-HSYN	NC timing	tvh	15	-	-	ns	
	Rise time, Fall	time	tvrf	-	-	15	ns	


Note1: Definition of parameters is as follows.


tc=1CLK, tcd=tch/tc, th=1H

Note2: All parameters should be kept within the specified range.


Note1: Unless otherwise specified, the input level is defined to be VIH= 0.8VCC, VIL= 0.2VCC.


Parameter	Symbol	Condition	min.	typ.	max.	Unit	Remarks
Serial clock cycle	tSCYC	READ	450	-	-	ns	-
Serial Clock Cycle	were	WRITE	100	-	-	ns	-
SCI high level pulse width	+CIIW	READ	210	-	-	ns	-
SCL high level pulse width	tSHW	WRITE	40	-	-	ns	-
CI low lovel pulse width	tSLW	READ	210	-	-	ns	-
SCL low level pulse width	ISLW	WRITE	40	-	-	ns	-
/CS rise time, fall time	tcsrf	/CS	-	-	15	ns	-
SCL rise time, fall time	tscrf	SCL	-	-	15	ns	-
SI rise time, fall time	tsirf	SI	-	-	15	ns	-
/CS setup time	tCSS	/CS	50	-	-	ns	-
/CS hold time	tCSH	/CS	30	-	-	ns	-
Data setup time	tSDS	SI	30	-	-	ns	-
Data hold time	tSDH	SI	15	-	-	ns	-
Reset pulse width	tRW	/RESET	2	-	-	μs	-
/RESET↑ to /CS time	tRCS	/RESET↑ to /CS	1	-	-	ms	-
Access time	tACCS	SO	-	-	180	ns	
Output disable time	tOHS	SO	-	-	100	ns	-

4.10.2 Serial interface (Ta= 25°C, VCC= 3.0V)

(1) Timing characteristics

Note1: All parameters should be kept within the specified range.

4.11 OPTICAL CHARACTERISTICS

<Backlight turning OFF>

8						(Note1,	Note3)
Parameter	Condition	Symbol	min.	typ.	max.	Unit	Remarks
Reflection ratio	White, at center	RE	10	15	-	%	Note4① Note6
Contrast ratio	White/Black, at center	CR	10	15	-	-	Note7

Reference data

							(Note1,	Note3)	
Parameter	Condit	ion	Symbol	min.	typ.	max.	Unit	Remarks	
Reflection ratio	White, at	RE	-	4	-	%	Note4② Note6	,	
Chromaticity	Whit	2	Wx	-	0.32	-	-		
coordinates	vv mit	e	Wy	-	0.34	-	-	Note8	
Color gamut	at center, against NT	SC color space	С	-	5	-	%		
Pasnonsa tima	White to black	$90\% \rightarrow 10\%$	Ton	-	7	14	ma	Note9	
Response time	Black to white	$10\% \rightarrow 90\%$	Toff	-	9	18	ms	Note10	

<Backlight turning ON>

					(Note2	, Note3,	Note5)
Parameter	Condition	Symbol	min.	typ.	max.	Unit	Remarks
Luminance	White at center $\theta \mathbf{R} = 0^\circ, \ \theta \mathbf{L} = 0^\circ, \ \theta \mathbf{U} = 0^\circ, \ \theta \mathbf{D} = 0^\circ$	L	150	220	-	cd/m ²	-
Contrast ratio	White/Black at center $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	CR	75	150	-	-	Note7
Luminance uniformity	White $\theta R= 0^\circ, \ \theta L= 0^\circ, \ \theta U= 0^\circ, \ \theta D= 0^\circ$ Maximum luminance: 100%	LU	60	70	-	%	Note11

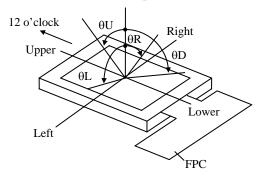
Reference data

(Note2, Note3, Note5)

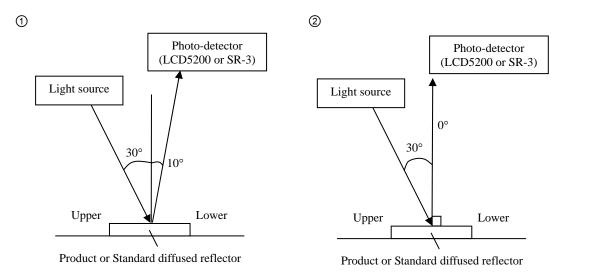
Paran	neter	Condition		Symbol	min.	typ.	max.	Unit	Remarks
Chromaticity		White		Wx	0.25	0.30	0.35	-	
coordinates	8	vv me	c	Wy	0.27	0.32	0.37	-	Note8
Color gam	ut	$\theta R=0^{\circ}, \ \theta L=0^{\circ}, \ \theta U=0^{\circ}, \ \theta D=0^{\circ}$ at center, against NTSC color space		С	-	40	-	%	
Response t	ima	White to black $90\% \rightarrow 10\%$		Ton	-	7	14	ma	Note9
Response t	line	Black to white	$10\% \rightarrow 90\%$	Toff	-	23	46	ms	Note10
	Right	$\theta U=0^{\circ}, \theta D=$	0°, CR≥ 5	θR	-	35	-	0	
Viewing	Left	$\theta U=0^{\circ}, \theta D=$	0°, CR≥ 5	θL	-	35	-	0	
angle	Up	$\theta R = 0^{\circ}, \ \theta L =$	0°, CR≥ 5	θU	-	35	-	0	-
Down		$\theta R = 0^{\circ}, \ \theta L =$	0°, CR≥ 5	θD	-	35	-	0	

☆

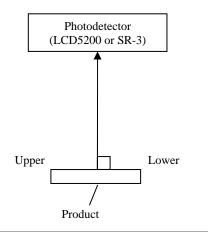
☆


☆

☆


NLT Technologies, Ltd.

- Note1: Measurement conditions are as follows. Ta= 25 °C, VCC= 3.0V
- Note2: Measurement conditions are as follows. Ta= 25 °C, VCC= 3.0V, IL= 13mA
- Note3: Definition of viewing angles


Normal axis (Perpendicular)

Note4: In reflective mode (Backlight turning OFF), Reflection ratio, Contrast ratio, Chromaticity coordinates and Color gamut are measured as follows.

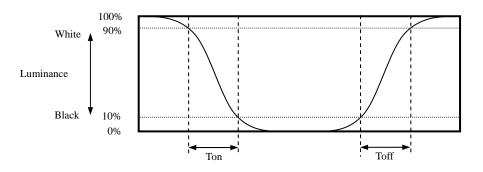
Note5: In transmissive mode (Backlight turning ON), Luminance, Contrast ratio, Chromaticity coordinates and Color gamut are measured as follows.

DATA SHEET DOD-PP-1297 (6th edition)

Note6: Definitions of reflection ratio

The reflection ratio is calculated by using the following formula.

Reflectance (RE) =
$$\frac{\text{Luminance of reflected light at white screen}}{\text{Luminance of standard diffused reflector}} \times 100$$

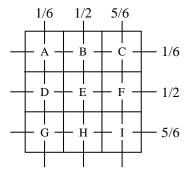

Note7: Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

Contrast ratio (CR) = Luminance of white screen Luminance of black screen

- Note8: The White chromaticity coordinates are deviated by the LED deviation in addition to color filter deviation.
- Note9: Definition of response times

Response time is measured, the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 90% down to 10%. Also Toff is the time it takes the luminance change from 10% up to 90% (See the following diagram.).



Note10: Product surface temperature: Top= 25°C

Note11: Definition of luminance uniformity

Luminance uniformity is calculated by using the following formula.

Luminance uniformity (LU) = $\frac{\text{Minimum luminance from A to I}}{\text{Maximum luminance from A to I}} \times 100$

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

Condition		Estimated luminance lifetime (MTTF) Note1, Note2, Note3	Unit
Module	25°C (Ambient temperature of LED) Continuous operation, IL= 13mA	(10,000)	h

Note1: MTTF is mean time to half-luminance.

Note2: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

Note3: The Luminance life-time is estimated from module Luminance life-time results of the representative products. It might be vary with the characteristic of individual LEDs.

6. RELIABILITY TESTS

Test item	Condition	Judgment Note1
High temperature and humidity (Operation)	 55 ± 2°C, RH = 85%, 240 hours Display data is black. 	
Heat cycle (Operation)	 -20 ± 3°C1 hour 70 ± 3°C1 hour 50 cycles, 4 hours/cycle Display data is black. 	
Thermal shock (Non operation)	 -20 ± 3°C30 minutes 70 ± 3°C30 minutes 100 cycles, 1 hour/cycle Temperature transition time is within 5 minutes. 	
Low pressure (Non operation)	 15kPa -20 ± 3°C24 hours 70 ± 3°C24 hours 	No display malfunctions
Low pressure (Operation)	 53.3 kPa -20 ± 3°C24 hours 70 ± 3°C24 hours 	
ESD (Operation)	 150pF, 150Ω, ±10kV 3 places on a panel surface 10 times each places at 1 sec interval 	
Dust (Operation)	 Sample dust: No. 15 (by JIS-Z8901) 15 seconds stir 8 times repeat at 1 hour interval 	
Vibration (Operation)	 30 to 100Hz, 19.6m/s² 30 minutes/cycle X, Y, Z directions 1 times each directions 	No display malfunctions
Mechanical shock (Non operation)	 3,920m/s², 2.5ms ±X, ±Y, ±Z directions 1 times each directions 	No physical damages

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect specifications.

7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS", after understanding these contents!

This sign has the meaning that customer will be injured by personnel or the product will sustain a damage, if customer has wrong operations.

This sign has the meaning that customer will be injured by personnel, if customer has wrong operations.

7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 3,920m/s² and equal to or no greater than 2.5ms)

7.3 ATTENTIONS

7.3.1 Handling of the product

- ① Take hold of both ends without touching the FPC when the product (LCD module) is picked up from the tray.
- ② Do not hook nor pull the FPC in order to avoid any damage.
- ③ When the product is put on the table temporarily, display surface must be placed downward.
- ④ When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- ⑤ The product must be installed and/or handled without any local stress such as bends or twist. Bends, twist or any local stress to any portion may cause display failures. And also do not put heavy or hard materials on the product.
- Do not hit or rub the surface of panel with hard materials, because it is easily scratched. (Polarizer pencil-hardness: 3H)
- ⑦ When cleaning the panel surface, wipe it with a soft dry cloth.
- ③ Do not push nor pull the FPC while the product is working.
- ③ Do not fold the FPC. When the FPC is folded, pattern disconnection may be caused. In case of bending FPC, the minimum curvature (R) must be more than 1.0 mm.
- When installing the product, do not contact a conductor such as a metal to the FPC excluding the terminal area. There is a risk of short circuit which is caused by breakage of insulation layer of the FPC.
- 1 When installing the product, apply the waterproof design to avoid going of water into the product.
- ② Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal for the worst, please wash it out with soap.

7.3.2 Environment

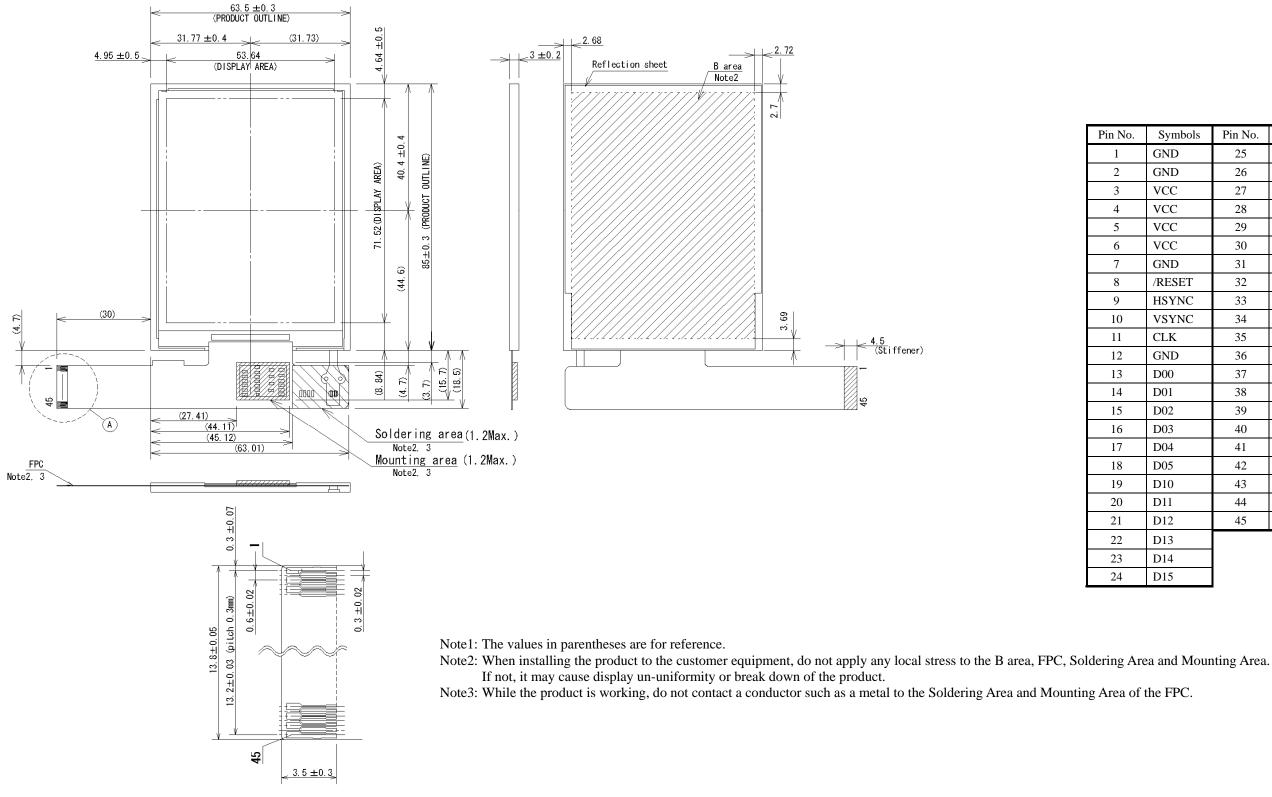
- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurring by temperature difference, the product packing box should be opened after enough time being left under the environment of an unpacking room. Evaluate the leaving time sufficiently because a situation of dew condensation occurring is changed by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with packing state)
- ③ Do not operate in high magnetic field. Circuits may be broken down by it.
- ④ This product is not designed as radiation hardened.

7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flicker, vertical seam or small spot may be observed depending on display patterns.
- ③ Do not display the fixed pattern for a long time because it may cause image sticking.
- ④ Optical characteristics may be changed depending on input signal timings.

7.3.4 Other


- ① All GND terminals should be used without any non-connected lines.
- ② Do not disassemble the product.
- ③ Pack the product with original shipping package, in order to avoid any damages during transportation, when returning the product to NLT.
- ④ When installing the product to the customer equipment, do not apply any local stress to the B area, FPC, Soldering Area and Mounting Area. If not, it may cause display un-uniformity or break down of the product.
- ⑤ The information of China RoHS directive six hazardous substances or elements in this product is as follows.

China RoHS directive six hazardous substances or elements						
Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr VI)	Polybrominated Biphenys (PBB)	Polybrominated Biphenyl Ethers (PBDE)	
0	0	0	0	0	0	

Note1: (): This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of SJ/T11363-2006 standard regulation.

☆

8. OUTLINE DRAWINGS

Adaptable connecter: FH23-45S-0.3SHW(05) (HRS)

Pin No.	Symbols	Pin No.	Symbols
1	GND	25	D20
2	GND	26	D21
3	VCC	27	D22
4	VCC	28	D23
5	VCC	29	D24
6	VCC	30	D25
7	GND	31	GND
8	/RESET	32	SCL
9	HSYNC	33	SI
10	VSYNC	34	SO
11	CLK	35	/CS
12	GND	36	VCOMIN
13	D00	37	N. C.
14	D01	38	GND
15	D02	39	N. C.
16	D03	40	N. C.
17	D04	41	N. C.
18	D05	42	N.C.
19	D10	43	GND
20	D11	44	ANODE
21	D12	45	CATHODE
22	D13		
23	D14		
24	D15		

Unit: mm

☆