# TFT COLOR LCD MODULE 

NL13676BC25-03F

39.5 cm (15.6 Type)<br>WXGA (1366×768)<br>LVDS Interface (1port)

# PRELIMINARY DATA SHEET 



DOD-PP-1897 (2nd edition)

This PRELIMINARY DATA SHEET is updated document from DOD-PP-1849(1)

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

## INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic products would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three grades: 'Standard", 'Special', and 'Specific".
Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard is required to contact an NLT sales representative in advance.

The Standard: Applications as any failure, malfunction or error of the products are free from any damage to death, human bodily injury or other property (Products Safety Issue) and not related the safety of the public (Social Issues), like general electric devices.
Examples: Office equipment, audio and visual equipment, communication equipment, test and measurement equipment, personal electronic equipment, home electronic appliances, car navigation system (with no vehicle control functions), seat entertainment monitor for vehicles and airplanes, fish finder (except marine radar integrated type), PDA, etc.

The Special: Applications as any failure, malfunction or error of the products might directly cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and required high level reliability by conventional wisdom.
Examples: Vehicle/train/ship control system, traffic signals system, traffic information control system, air traffic control system, surgery/operation equipment monitor, disaster/crime prevention system, etc.

The Specific: Applications as any failure, malfunction or error of the products might severe cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and developed, designed and manufactured in accordance with the standards or quality assurance program designated by the customer who requires extremely high level reliability and quality.
Examples: Aerospace system (except seat entertainment monitor), nuclear control system, life support system, etc.

The quality grade of this product is the 'Standard" unless otherwise specified in this document.

## CONTENTS

INTRODUCTION ..... 2

1. OUTLINE ..... 4
1.1 STRUCTURE AND PRINCIPLE ..... 4
1.2 APPLICATIONS ..... 4
1.3 FEATURES ..... 4
2. GENERAL SPECIFICATIONS ..... 5
3. BLOCK DIAGRAM .....  6
4. DETAILED SPECIFICATIONS .....  8
4.1 MECHANICAL SPECIFICATIONS ..... 8
4.2 ABSOLUTE MAXIMUM RATINGS ..... 8
4.3 ELECTRICAL CHARACTERISTICS ..... 9
4.3.1 LCD panel signal processing board ..... 9
4.3.2 Backlight lamp ..... 10
4.3.3 Power supply voltage ripple ..... 10
4.3.4 Fuse ..... 10
4.4 POWER SUPPLY VOLTAGE SEQUENCE ..... 11
4.4.1 LCD panel signal processing board ..... 11
4.4.2 LED driver ..... 11
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS ..... 12
4.5.1 LCD panel signal processing board ..... 12
4.5.2 Backlight lamp ..... 13
4.5.3 Position of plug and socket ..... 13
4.5.4 Connection between receiver and transmitter for LVDS ..... 14
4.5.5 Input data mapping ..... 17
4.6 DISPLAY COLORS AND INPUT DATA SIGNALS ..... 18
4.6.1 Combinations of input data signals, FRC and MSL signal ..... 18
4.6.2 16,777,216 colors ..... 19
4.6.3 262,144 colors ..... 20
4.7 DISPLAY POSITIONS ..... 21
4.8 INPUT SIGNAL TIMINGS ..... 22
4.8.1 Outline of input signal timings ..... 22
4.8.2 Timing characteristics ..... 23
4.8.3 Input signal timing chart ..... 24
4.9 OPTICS ..... 25
4.9.1 Optical characteristics ..... 25
4.9.2 Definition of contrast ratio ..... 26
4.9.3 Definition of luminance uniformity ..... 26
4.9.4 Definition of response times ..... 26
4.9.5 Definition of viewing angles ..... 26
5. ESTIMATED LUMINANCE LIFETIME ..... 27
6. RELIABILITY TESTS ..... 28
7. PRECAUTIONS ..... 29
7.1 MEANING OF CAUTION SIGNS ..... 29
7.2 CAUTIONS ..... 29
7.3 ATTENTIONS ..... 29
7.3.1 Handling of the product ..... 29
7.3.2 Environment ..... 30
7.3.3 Characteristics ..... 30
7.3.4 Others ..... 30
8. OUTLINE DRAWINGS ..... 31
8.1 FRONT VIEW ..... 31
8.2 REAR VIEW ..... 32
REVISION HISTORY ..... 33

## 1. OUTLINE

### 1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL13676BC25-03F is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.
The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.
Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing circuit, and sent to the driver LSIs which drive the individual TFT arrays.
The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

### 1.2 APPLICATIONS

- For industrial use


### 1.3 FEATURES

- High luminance
- High contrast
- LED backlight
- LVDS interface
- Selectable 8bit or 6bit digital signals for data of RGB


## 2. GENERAL SPECIFICATIONS

| Display area | $344.232(\mathrm{H}) \times 193.536$ (V) mm |
| :---: | :---: |
| Diagonal size of display | 39.5 cm (15.6 inches) |
| Drive system | a-Si TFT active matrix |
| Display color | 16,777,216 colors (At 8-bit input, FRC terminal= Low or Open) 262,144 colors (At 6-bit input, FRC terminal= High) |
| Pixel | 1,366 (H) $\times 768$ (V) pixels |
| Pixel arrangement | RGB (Red dot, Green dot, Blue dot) vertical stripe |
| Dot pitch | $0.084(\mathrm{H}) \times 0.252(\mathrm{~V}) \mathrm{mm}$ |
| Pixel pitch | $0.252(\mathrm{H}) \times 0.252(\mathrm{~V}) \mathrm{mm}$ |
| Module size | 363.8 (W) $\times 215.9$ (H) $\times 12.65$ (D) mm (typ.) |
| Weight | $1,070 \mathrm{~g}$ (typ.) |
| Contrast ratio | 900:1 (typ.) |
| Viewing angle | At the contrast ratio $\geq 10: 1$ <br> - Horizontal: Right side $80^{\circ}$ (typ.), Left side $80^{\circ}$ (typ.) <br> - Vertical: Up side $80^{\circ}$ (typ.), Down side $80^{\circ}$ (typ.) |
| Designed viewing direction | - Viewing direction without image reversal: Up side ( 12 o'clock) <br> - Viewing direction with contrast peak: Down side ( 6 o'clock) <br> - Viewing angle with optimum grayscale ( $\gamma=2.2$ ): Normal axis (perpendicular) |
| Polarizer surface | Antiglare |
| Polarizer pencil-hardness | 3H (min.) [by JIS K5600] |
| Color gamut | At LCD panel center <br> 60\% (typ.) [against NTSC color space] |
| Response time | $\begin{aligned} & \text { Ton }+ \text { Toff (10\% } \longleftrightarrow \rightarrow 90 \% \text { ) } \\ & \text { 18ms (typ.) } \end{aligned}$ |
| Luminance | $\begin{gathered} \text { At IL }=90 \mathrm{~mA} / \text { One circuit } \\ 1,100 \mathrm{~cd} / \mathrm{m}^{2} \text { (typ.) } \end{gathered}$ |
| Signal system | LVDS 1port |
| Power supply voltage | LCD panel signal processing board: 3.3 V |
| Backlight | LED backlight: |
| Power consumption | At IL $=90 \mathrm{~mA} /$ One circuit, Checkered flag pattern 16.2 W (typ.) |

## 3. BLOCK DIAGRAM



Note1: Relations between GND (Signal ground) and FG (Frame ground) in the LCD module are as follows.

| GND- FG | Connected |
| :--- | :--- |

Note2: GND and FG must be connected to customer equipment's ground, and it is recommended that these grounds be connected together in customer equipment.

Note3: Backlight in detail

Backlight


## 4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

| Parameter | Specification | Unit |
| :---: | :---: | :---: |
| Module size | $363.8 \pm 0.5(\mathrm{~W}) \times 215.9 \pm 0.5(\mathrm{H}) \times 12.65 \pm 0.5(\mathrm{D})$ | Note1 |
| Display area | $344.232(\mathrm{H}) \times 193.536(\mathrm{~V})$ | mm |
| Weight | 1,070 (typ.), $1,170($ max. $)$ | mm |

Note1: See "8. OUTLINE DRAWINGS".

### 4.2 ABSOLUTE MAXIMUM RATINGS

| Parameter |  |  | Symbol | Rating | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply voltage | LCD panel signal processing board |  | VCC | -0.3 to +4.0 | V | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |
| Input voltage for signals | Display signals <br> Note1 |  | VD | -0.3 to 1.98 | V |  |
|  | Function signals Note2 |  | VF | -0.3 to +4.0 |  |  |
| Backlight | Forward current |  | IL | 100 | mA | per one circuit |
| Storage temperature |  |  | Tst | -30 to +80 | ${ }^{\circ} \mathrm{C}$ | - |
| Operating temperature |  | Front surface | TopF | -20 to +70 | ${ }^{\circ} \mathrm{C}$ | Note3 |
|  |  | Rear surface | TopR | -20 to +70 | ${ }^{\circ} \mathrm{C}$ | Note4 |
| Relative humidity Note5 |  |  | RH | $\leq 95$ | \% | $\mathrm{Ta} \leq 40^{\circ} \mathrm{C}$ |
|  |  |  | $\leq 85$ | \% | $40^{\circ} \mathrm{C}<\mathrm{Ta} \leq 50^{\circ} \mathrm{C}$ |  |
|  |  |  | $\leq 55$ | \% | $50^{\circ} \mathrm{C}<\mathrm{Ta} \leq 60^{\circ} \mathrm{C}$ |  |
|  |  |  | $\leq 36$ | \% | $60^{\circ} \mathrm{C}<\mathrm{Ta} \leq 70^{\circ} \mathrm{C}$ |  |
| Absolute humidity Note5 |  |  |  | AH | $\begin{gathered} \leq 70 \\ \text { Note } 6 \end{gathered}$ | $\mathrm{g} / \mathrm{m}^{3}$ | $\mathrm{Ta}>70^{\circ} \mathrm{C}$ |

Note1: D0+/-, D1+/-, D2+/-, D3+/- and CLK+/-
Note2: FRC and MSL
Note3: Measured at LCD panel surface (including self-heat)
Note4: Measured at LCD module's rear shield surface (including self-heat)
Note5: No condensation
Note6: Water amount at $\mathrm{Ta}=70^{\circ} \mathrm{C}$ and $\mathrm{RH}=36 \%$

### 4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Parameter |  | Symbol | min. | typ. | max. | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply voltage |  | VCC | 3.0 | 3.3 | 3.6 | V | - |
| Power supply current |  | ICC | - | $\begin{gathered} 480 \\ \text { Note } 1 \end{gathered}$ | $\begin{gathered} 800 \\ \text { Note2 } \end{gathered}$ | mA | at $\mathrm{VCC}=3.3 \mathrm{~V}$ |
| Permissible ripple voltage |  | VRP | - | - | 300 | mVp-p | for VCC |
| Differential input threshold voltage | High | VTH | - | - | $+100$ | mV | at $\mathrm{VCM}=1.25 \mathrm{~V}$ Note3 |
|  | Low | VTL | -100 | - | - | mV |  |
| Terminating resistance |  | RT | - | 100 | - | $\Omega$ | - |
| Input voltage for FRC and MSL signals | High | VFH | 2.25 | - | VCC | V | - |
|  | Low | VFL | 0 | - | 0.40 | V |  |
| Input current for FRC and MSL signals | High | IFH | - | - | 500 | $\mu \mathrm{A}$ | - |
|  | Low | IFL | 0 | - | - | $\mu \mathrm{A}$ |  |

Note1: Checkered flag pattern [by EIAJ ED-2522]
Note2: Pattern for maximum current
Note3: Common mode voltage for LVDS receiver
4.3.2 Backlight lamp
( $\mathrm{Ta}=25^{\circ} \mathrm{C}$, Note 1 , Note2, Note3)

| Parameter | Symbol | min. | typ. | max. | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forward current | IL | - | 90.0 | 95.0 | mA | - |
| Forward Voltage | VL | 24.4 | 27.1 | 29.8 | V | $\begin{gathered} \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ \text { at } \mathrm{IL}=90 \mathrm{~mA} \\ \text { /One circuit } \end{gathered}$ |
|  |  | 23.2 | - | - |  | $\begin{gathered} \hline \mathrm{Ta}=+70^{\circ} \mathrm{C} \\ \text { at } \mathrm{IL}=90 \mathrm{~mA} \\ \text { /One circuit } \\ \hline \end{gathered}$ |
|  |  | - | - | 31.4 |  | $\begin{gathered} \mathrm{Ta}=-20^{\circ} \mathrm{C} \\ \text { at } \mathrm{IL}=90 \mathrm{~mA} \\ \text { /One circuit } \\ \hline \end{gathered}$ |
|  |  | - | - | 31.5 |  | $\begin{gathered} \mathrm{Ta}=-20^{\circ} \mathrm{C} \\ \text { at } \mathrm{IL}=95 \mathrm{~mA} \\ \text { /One circuit } \end{gathered}$ |

Note1: Please drive with constant current.
Note2: The above specifications are for one LED circuit of the backlight.
Note3: The Luminance uniformity may be changed depending on the current variation between 6 circuits. It is recommended that the current value difference amongst the circuits be less than $5 \%$.

### 4.3.3 Power supply voltage ripple

This product works if the ripple voltage levels are over the permissible values as the following table, but there might be noise on the display image.

| Power supply voltage |  | Ripple voltageNote1 <br> (Measure at input terminal of power supply) <br> VCC$\quad 3.3 \mathrm{~V}$ | $\leq 300$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{mVp}-\mathrm{p}$ |  |  |  |

Note1: The permissible ripple voltage includes spike noise.

### 4.3.4 Fuse

| Parameter | Fuse |  | Rating | Fusing current | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Type | Supplier |  |  |  |
| VCC | FCC16152AB | KAMAYA <br> ELECTRIC Co., Ltd. | 1.5A | 3.0A | Note1 |
|  |  |  | 36 V |  |  |

Note1: The power supply's rated current must be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

### 4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board


* These signals should be measured at the terminal of $100 \Omega$ resistance.

Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below 3.0 V , there is a possibility that a product does not work due to a protection circuit.
Note2: Display signals (D0+/-, D1+/-, D2+/-, D3+/- and CLK $+/-$ ) and function signals (FRC and MSL) must be set to Low or High-impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.
If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VCC also must be shut down.

### 4.4.2 LED driver



Note1: These are the display and function signals for LCD panel signal processing board.
Note2: The backlight should be turned on within the valid period of display and function signals, in order to avoid unstable data display.

### 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

### 4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): 185083-20121 (P-TWO ELECTRIC TECHNOLOGY CO., LTD.)
Adaptable plug:
DF14-20S-1.25C (Hirose Electric Co., Ltd. (HRS))

| Pin No. | Symbol | Signal | Input data signal: 8-bit |  | Input data signal: 6-bit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MAP A | MAP B |  |  |
| 1 | VCC | Power supply | Power supply |  |  | Note2 |
| 2 | VCC |  |  |  |  |  |  |
| 3 | GND | Ground | Ground |  |  | Note2 |
| 4 | N.C. | - | Keep this pin Open. |  |  | - |
| 5 | D0- | Pixel data | R2-R7, G2 | R0-R5, G0 |  | Note 1 |
| 6 | D0+ |  |  |  |  |  |  |
| 7 | GND | Ground | Ground |  |  | Note2 |
| 8 | D1- | Pixel data | G3-G7, B2-B3 | G1-G5, B0-B1 |  | Note 1 |
| 9 | D1+ |  |  |  |  |  |  |
| 10 | GND | Ground | Ground |  |  | Note2 |
| 11 | D2- | Pixel data | B4-B7, DE | B2-B5, DE |  | Note 1 |
| 12 | D2+ |  |  |  |  |  |  |
| 13 | GND | Ground | Ground |  |  | Note2 |
| 14 | CLK- | Pixel clock | Pixel clock |  |  | Note 1 |
| 15 | CLK+ |  |  |  |  |  |  |  |  |
| 16 | GND | Ground |  | Ground |  | Note2 |
| 17 | $\begin{gathered} \hline \text { D3- } \\ \text { /GND } \end{gathered}$ | Pixel data / Ground | $\begin{aligned} & \text { R0-R1 } \\ & \text { G0-G1 } \\ & \text { B0-B1 } \end{aligned}$ | $\begin{aligned} & \text { R6-R7 } \\ & \text { G6-G7 } \end{aligned}$ | Ground | Note1 |
| 18 | $\begin{gathered} \hline \text { D3+ } \\ \text { / GND } \end{gathered}$ |  |  |  |  |  |
| 19 | FRC | Selection of the number of colors | Low or Open |  | High | - |
| 20 | MSL | Selection of LVDS Input data map | High | Low or Open | High | Note3 <br> Note4 |

Note1: Twist pair wires with $100 \Omega$ (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
Note2: All GND and VCC terminals should be used without any non-connected lines.
Note3: See "4.5.4 Connection between receiver and transmitter for LVDS".
Note4: See "4.6 DISPLAY COLORS AND INPUT DATA SIGNALS".

### 4.5.2 Backlight lamp

CN2 plug (LCD module side): SM10B-SHLS-TF(LF)(SN) (J.S.T. Mfg. Co., Ltd.) Adaptable socket: SHLP-10V-S-B (J.S.T. Mfg. Co., Ltd.)

| Pin No. | Symbol | Signal | Remarks |
| :---: | :---: | :---: | :---: |
| 1 | A1 | Anode1 | - |
| 2 | A2 | Anode2 | - |
| 3 | A3 | Anode3 | - |
| 4 | A4 | Anode4 | - |
| 5 | K1 | Cathode1 | - |
| 6 | K2 | Cathode2 | - |
| 7 | K3 | Cathode3 | - |
| 8 | K4 | Cathode4 | - |
| 9 | K5 | Cathode5 | - |
| 10 | K6 | Cathode6 | - |

### 4.5.3 Position of plug and socket

Rear side


Insert direction
4.5.4 Connection between receiver and transmitter for LVDS
(1) Input data signal: 8-bit, MAP A (MSL: High, FRC: Low or Open)


Note1: Recommended transmitter DS90C383 (Texas Instruments)
Note2: LSB (Least Significant Bit) - R0, G0, B0 MSB (Most Significant Bit) - R7, G7, B7
Note3: Twist pair wires with $100 \Omega$ (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
Note4: Input signals to TXIN23, TXIN24 and TXIN25 are not used inside the product, but do not keep them open to avoid noise problem.
(2) Input data signal: 8-bit, MAP B (MSL: Low or Open, FRC: Low or Open)


Note1: Recommended transmitter DS90C383 (Texas Instruments).
Note2: LSB (Least Significant Bit) - R0, G0, B0 MSB (Most Significant Bit) - R7, G7, B7
Note3: Twist pair wires with $100 \Omega$ (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
Note4: Input signals to TXIN23, TXIN24 and TXIN25 are not used inside the product, but do not keep them open to avoid noise problem.
(3) Input data signal: 6-bit (MSL: High, FRC: High)


Note1: Recommended transmitter DS90C383 (Texas Instruments).
Note2: LSB (Least Significant Bit) - R0, G0, B0 MSB (Most Significant Bit) - R5, G5, B5
Note3: Twist pair wires with $100 \Omega$ (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
Note4: Input signals to TXIN24, TXIN25, TXIN27, TXIN5, TXIN10, TXIN11, TXIN16, TXIN17 and TXIN23 are not used inside the product, but do not keep them open to avoid noise problem.

### 4.5.5 Input data mapping

(1) Input data signal: 8-bit, MAP A

(2) Input data signal: 8-bit, MAP B

(3) Input data signal: 6-bit


### 4.6 DISPLAY COLORS AND INPUT DATA SIGNALS

### 4.6.1 Combinations of input data signals, FRC and MSL signal

This product can display $16,777,216$ colors equivalent with 256 gray scales and 262,144 colors with 64 gray scales by combination of input data signals, FRC and MSL signal. See the following table.

| Combination | Input data <br> signals | Input Data <br> mapping | CN1- <br> Pin No.17 and 18 | FRC <br> terminal | MSL <br> terminal | Display colors | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | 8-bit | MAP A | D3+/- | Low or Open | High | $16,777,216$ | Note1 |
| (2) | 8-bit | MAP B | D3+/- | Low or Open | Low or Open | $16,777,216$ | Note1 |
| (3) | 6-bit | - | GND | High | High | 262,144 | Note2 |

Note1: See "4.6.2 16,777,216 colors".
Note2: See "4.6.3 262,144 colors".

This product can display $16,777,216$ colors equivalent with 256 gray scales by combination (1) or (2).
(See "4.6.1 Combinations of input data signals, FRC and MSL signal".)
Also the relation between display colors and input data signals is as follows.

4.6.3 262,144 colors

This product can display 262,144 colors with 64 gray scales by combination (3).
(See "4.6.1 Combinations of input data signals, FRC and MSL signal".)
Also the relation between display colors and input data signals is as follows.


### 4.7 DISPLAY POSITIONS

The following table is the coordinates per pixel.
C $(0,0)$


| $\mathrm{C}(0,0)$ | C( 1, 0) | - | $\mathrm{C}(\mathrm{X}, 0)$ | -•• | $\mathrm{C}(1364,0)$ | $\mathrm{C}(1365,0)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}(0,1)$ | C( 1, 1) | -•• | $\mathrm{C}(\mathrm{X}, 1)$ | -•• | $\mathrm{C}(1364,1)$ | $\mathrm{C}(1365,1)$ |
| $\stackrel{-}{\cdot}$ | - | - - • | - | - • - | - | - ${ }^{\bullet}$ - |
| $\mathrm{C}(0, \mathrm{Y})$ | $\mathrm{C}(1, \mathrm{Y})$ | - • • | $\mathrm{C}(\mathrm{X}, \mathrm{Y})$ | -•• | $\mathrm{C}(1364, \mathrm{Y})$ | $\mathrm{C}(1365, \mathrm{Y})$ |
| - | $\stackrel{-}{\bullet}$ | -•• | $\stackrel{-}{\bullet}$ | - • - | - | - |
| C( 0,766) | C( 1,766) | - • - | C( X, 766) | -•• | $\mathrm{C}(1364,766)$ | C( 1365,766 ) |
| C( 0,767) | C( 1, 767) | -• | C( X, 767) | - | C(1364, 767) | C( 1365,767 ) |

4.8 INPUT SIGNAL TIMINGS
4.8.1 Outline of input signal timings

- Horizontal signal

Note1


Note1: This diagram indicates virtual signal for set up to timing.
Note2: See "4.8.3 Input signal timing chart" for the pulse number.
4.8.2 Timing characteristics
(Note1, Note2, Note3)

| Parameter |  |  | Symbol | min. | typ. | max. | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLK | Frequency |  | 1/tc | 71.0 | 75.4 | 79.8 | MHz | 13.263ns (typ.) |
|  | Duty |  | - | - |  |  | - |  |
|  | Rise time, Fall time |  | - |  |  |  | ns |  |
| DATA | CLK-DATA | Setup time | - | - |  |  | ns | - |
|  |  | Hold time | - |  |  |  | ns |  |
|  | Rise time, Fall time |  | - |  |  |  | ns |  |
| DE | Horizontal | Cycle | th | 16.542 | 20.678 | 26.88 | $\mu \mathrm{s}$ | 48.360 kHz (typ.) |
|  |  |  |  | 1,446 | 1,560 | 1,936 | CLK |  |
|  |  | Display period | thd |  | 1,366 |  | CLK |  |
|  | Vertical (One frame) |  | tv | 14.29 | 16.67 | 20.00 | ms | 60.0 Hz (typ.) |
|  |  | Cycle | tv | 778 | 806 | - | H |  |
|  |  | Display period | tvd | 768 |  |  | H |  |
|  | CLK-DE | Setup time | - | - |  |  | ns | - |
|  |  | Hold time | - |  |  |  | ns |  |
|  | Rise time, Fall time |  | - |  |  |  | ns |  |

Note1: Definition of parameters is as follows.

$$
\mathrm{tc}=1 \mathrm{CLK}, \mathrm{th}=1 \mathrm{H}
$$

Note2: See the data sheet of LVDS transmitter.
Note3: Vertical cycle (tv) should be specified in integral multiple of Horizontal cycle (th).
4.8.3 Input signal timing chart

Horizontal timing


Vertical timing


### 4.9 OPTICS

4.9.1 Optical characteristics
(Note1, Note2)

| Parameter |  | Condition | Symbol | min. | typ. | max. | Unit | Measuring instrument | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminance |  | White at center $\theta \mathrm{R}=0^{\circ}, \theta \mathrm{L}=0^{\circ}, \theta \mathrm{U}=0^{\circ}, \theta \mathrm{D}=0^{\circ}$ | L | 800 | 1,100 | - | $\mathrm{cd} / \mathrm{m}^{2}$ | BM-5A | - |
| Contrast ratio |  | White/Black at center $\theta \mathrm{R}=0^{\circ}, \theta \mathrm{L}=0^{\circ}, \theta \mathrm{U}=0^{\circ}, \theta \mathrm{D}=0^{\circ}$ | CR | 540 | 900 | - | - | BM-5A | Note3 |
| Luminance uniformity |  | $\begin{gathered} \text { White } \\ \theta \mathrm{R}=0^{\circ}, \theta \mathrm{L}=0^{\circ}, \theta \mathrm{U}=0^{\circ}, \theta \mathrm{D}=0^{\circ} \end{gathered}$ | LU | - | 1.25 | 1.4 | - | BM-5A | Note4 |
| Chromaticity | White | $\mathbf{x}$ coordinate | Wx | 0.263 | 0.313 | 0.363 | - | SR-3 | Note5 |
|  |  | y coordinate | Wy | 0.279 | 0.329 | 0.379 | - |  |  |
|  | Red | $\mathbf{x}$ coordinate | Rx | - | 0.631 | - | - |  |  |
|  |  | y coordinate | Ry | - | 0.357 | - | - |  |  |
|  | Green | $\mathbf{x}$ coordinate | Gx | - | 0.344 | - | - |  |  |
|  |  | y coordinate | Gy | - | 0.608 | - | - |  |  |
|  | Blue | $\mathbf{x}$ coordinate | Bx | - | 0.153 | - | - |  |  |
|  |  | y coordinate | By | - | 0.089 | - | - |  |  |
| Color gamut |  | $\begin{gathered} \theta \mathrm{R}=0^{\circ}, \theta \mathrm{L}=0^{\circ}, \theta \mathrm{U}=0^{\circ}, \theta \mathrm{D}=0^{\circ} \\ \text { at center, against NTSC color space } \end{gathered}$ | C | 55 | 60 | - | \% |  |  |
| Response time |  | White to Black | Ton | - | 3 | 5 | ms | BM-5A | Note6 |
|  |  | Black to White | Toff | - | 15 | 21 | ms | -10000 | Note7 |
| Viewing angle | Right | $\theta \mathrm{U}=0^{\circ}, \theta \mathrm{D}=0^{\circ}, \mathrm{CR} \geq 10$ | $\theta \mathrm{R}$ | 70 | 80 | - | - | $\begin{gathered} \text { EZ } \\ \text { Contrast } \end{gathered}$ | Note8 |
|  | Left | $\theta \mathrm{U}=0^{\circ}, \theta \mathrm{D}=0^{\circ}, \mathrm{CR} \geq 10$ | өL | 70 | 80 | - | - |  |  |
|  | Up | $\theta \mathrm{R}=0^{\circ}, \theta \mathrm{L}=0^{\circ}, \mathrm{CR} \geq 10$ | $\theta \mathrm{U}$ | 70 | 80 | - | - |  |  |
|  | Down | $\theta \mathrm{R}=0^{\circ}, \theta \mathrm{L}=0^{\circ}, \mathrm{CR} \geq 10$ | $\theta \mathrm{D}$ | 70 | 80 | - | - |  |  |

Note1: These are initial characteristics.
Note2: Measurement conditions are as follows.
$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{IL}=90 \mathrm{~mA} /$ One circuit, Display mode: WXGA,
Horizontal cycle $=1 / 48.360 \mathrm{kHz}$, Vertical cycle $=1 / 60.0 \mathrm{~Hz}, \mathrm{FRC}=$ Low ( 8 -bit MODE)
Optical characteristics are measured at luminance saturation 20minutes after the product works in the dark room. Also measurement methods are as follows.


Note3: See "4.9.2 Definition of contrast ratio".
Note4: See "4.9.3 Definition of luminance uniformity".
Note5: These coordinates are found on CIE 1931 chromaticity diagram.
Note6: Product surface temperature: $\mathrm{TopF}=35^{\circ} \mathrm{C}$
Note7: See "4.9.4 Definition of response times".
Note8: See "4.9.5 Definition of viewing angles".

### 4.9.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

$$
\text { Contrast ratio }(\mathrm{CR})=\frac{\text { Luminance of white screen }}{\text { Luminance of black screen }}
$$

### 4.9.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.

$$
\text { Luminance uniformity }(\mathrm{LU})=\frac{\text { Maximum luminance from © }{ }^{(1)} \text { to © } 9}{\text { Minimum luminance from }(1) \text { to } 9}
$$

The luminance is measured at near the 9 points shown below.


### 4.9.4 Definition of response times

Response time is measured at the time when the luminance changes from " white " to " black ", or " black " to " white " on the same screen point, by photo-detector. Ton is the time when the luminance changes from $90 \%$ down to $10 \%$. Also Toff is the time when the luminance changes from $10 \%$ up to $90 \%$ (See the following diagram.).

4.9.5 Definition of viewing angles


## 5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

| Condition |  | $\begin{array}{c}\text { Estimated luminance } \\ \text { lifetime } \\ \text { (Life time expectancy) } \\ \text { Note1, Note2, Note3 }\end{array}$ | Unit |
| :---: | :---: | :---: | :---: |$\}$

Note1: Life time expectancy is mean time to half-luminance.
Note2: Estimated luminance lifetime is not the value for an LCD module but the value for LED elementary substance.
Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

## 6. RELIABILITY TESTS

| Test item | Condition | Judgment | Note1 |
| :---: | :---: | :---: | :---: |
| High temperature and humidity (Operation) | (1) $60 \pm 2^{\circ} \mathrm{C}, \mathrm{RH}=90 \%, 240$ hours <br> (2) Display data is black. | No display malfunctions |  |
| High temperature (Operation) | (1) $70 \pm 3^{\circ} \mathrm{C}, 240$ hours <br> (2) Display data is black. |  |  |
| Heat cycle (Operation) | (1) $-20 \pm 3^{\circ} \mathrm{C} \ldots$ hour $70 \pm 3^{\circ} \mathrm{C}$... 1 hour <br> (2) 50cycles, 4 hours/cycle <br> (3) Display data is Black. |  |  |
| Thermal shock (Non operation) | (1) $-30 \pm 3^{\circ} \mathrm{C} \ldots 30$ minutes $80 \pm 3^{\circ} \mathrm{C} \ldots 30$ minutes <br> (2) 100cycles, 1hour/cycle <br> (3) Temperature transition time is within 5 minutes. |  |  |
| ESD <br> (Operation) | (1) $150 \mathrm{pF}, 150 \Omega, \pm 10 \mathrm{kV}$ <br> (2) 9 places on a panel surface Note2 <br> (3) 10 times each places at 1 sec interval |  |  |
| Dust (Operation) | (1) Sample dust: No. 15 (by JIS-Z8901) <br> (2) 15 seconds stir <br> (3) 8 times repeat at 1 hour interval |  |  |
| Vibration (Non operation) | (1) 5 to $100 \mathrm{~Hz}, 11.76 \mathrm{~m} / \mathrm{s}^{2}$ <br> (2) 1 minute/cycle <br> (3) $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions <br> (4) 50 times each directions | No display malfunctions No physical damages |  |
| Mechanical shock (Non operation) | (1) $294 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}$ <br> (2) $\pm X, \pm Y, \pm Z$ directions <br> (3) 3 times each directions |  |  |

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.
Note2: See the following figure for discharge points.


## 7. PRECAUTIONS

7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!


This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.


This sign has the meaning that a customer will be injured if the customer practices wrong operations.

### 7.2 CAUTIONS

* Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than $294 \mathrm{~m} / \mathrm{s}^{\mathbf{2}}$ and equal to or no greater than 11ms, Pressure: Equal to or no greater than $19.6 \mathbf{N}$ ( $\mathbf{\$ 1 6 m m} \mathbf{j i g}$ ))


### 7.3 ATTENTIONS



### 7.3.1 Handling of the product

(1) Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
(2) Do not hook nor pull cables such as lamp cable, and so on, in order to avoid any damage.
(3) When the product is put on the table temporarily, display surface must be placed downward.
(4) When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
(5) The torque for product mounting screws must never exceed $0.343 \mathrm{~N} \cdot \mathrm{~m}$. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be $\leq 2.8 \mathrm{~mm}$.
(6) The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.
(7) Do not press or rub on the sensitive product surface. When cleaning the panel surface, wipe it with a soft dry cloth.
(8) Do not push or pull the interface connectors while the product is working.
(9) When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
(10) Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

### 7.3.2 Environment

(1) Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
(2) In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
(3) Do not operate in high magnetic field. If not, circuit boards may be broken.
(4) This product is not designed as radiation hardened.

### 7.3.3 Characteristics

## The following items are neither defects nor failures.

(1) Characteristics of the LCD (such as response time, luminance, color uniformity and so on) may be changed depending on ambient temperature. If the product is stored under condition of low temperature for a long time, it may cause display mura. In this case, the product should be operated after enough time being left under condition of operating temperature.
(2) Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns
(3) Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
(4) The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
(5) Optical characteristics may be changed depending on input signal timings.

### 7.3.4 Others

(1) All VCC and GND terminals should be used without any non-connected lines.
(2) Do not disassemble a product or adjust variable resistors.
(3) Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT.
8. OUTLINE DRAWINGS
8.1 FRONT VIEW


Note1: The values in parentheses are for reference.
Note2: The torque for product mounting screws must never exceed $0.343 \mathrm{~N} \cdot \mathrm{~m}$. The length of product mounting screws from surface of plate must be $\leq 2.8 \mathrm{~mm}$
Note3: Module depth excludes projection such as hook, and so on.
8.2 REAR VIEW


Note 1: The values in parentheses are for reference.
Note2: The torque for product mounting screws must never exceed $0.343 \mathrm{~N} \cdot \mathrm{~m}$. The length of product mounting screws from surface of plate must be $\leq 2.8 \mathrm{~mm}$.

## REVISION HISTORY

The inside of latest specifications is revised to the clerical error and the major improvement of previous edition. Only a changed part such as functions, characteristic value and so on that may affect a design of customers, are described especially below.

| Edition | Document number | Prepared date | Revision contents and signature |
| :---: | :---: | :---: | :---: |
| 1st edition | $\begin{aligned} & \text { DOD-PP- } \\ & 1849 \end{aligned}$ | $\begin{aligned} & \text { Feb. 21, } \\ & 2014 \end{aligned}$ | Revision contents <br> New issue <br> Writer |
| 2nd edition | $\begin{aligned} & \text { DOD-PP- } \\ & 1897 \end{aligned}$ | $\begin{aligned} & \text { May 23, } \\ & 2014 \end{aligned}$ | Revision contents <br> P1 WXGA $\rightarrow$ WXGA ( $1366 \times 768$ ) <br> P5 General specifications <br> - Weight: TBD g (typ.) $\rightarrow 1,070 \mathrm{~g}$ (typ.) <br> - Response time: (18) ms (typ.) $\rightarrow 18 \mathrm{~ms}$ (typ.) <br> - Luminance: $\mathrm{IL}=(90) \mathrm{mA} \rightarrow \mathrm{IL}=90 \mathrm{~mA}$ <br> - Power consumption: $\mathrm{IL}=(90) \mathrm{mA},(16.3) \mathrm{W}$ (typ.) $\rightarrow \mathrm{IL}=90 \mathrm{~mA}, 16.2 \mathrm{~W}$ (typ.) <br> P8 Mechanical specifications <br> - Weight: TBD g (typ., max.) $\rightarrow 1,070,1,170 \mathrm{~g}$ (typ., max.) <br> P8 Absolute maximum ratings <br> - Backlight - Forward current: TBD mA $\rightarrow 100 \mathrm{~mA}$ <br> - Storage temperature: $(-30 \text { to }+80)^{\circ} \mathrm{C} \rightarrow-30$ to $+80^{\circ} \mathrm{C}$ <br> P9 LCD panel signal processing board <br> - Power supply current: (480), (800) mA (typ., max.) $\rightarrow 480,800 \mathrm{~mA}$ (typ., max.) <br> - Permissible ripple voltage: (300) mVp-p (max.) $\rightarrow 300 \mathrm{mVp}-\mathrm{p}$ (max.) <br> P10 Backlight lamp <br> - Forward current: (90), (95) mA (typ., max.) $\rightarrow 90.0,95.0 \mathrm{~mA}$ (typ., max.) <br> - Forward voltage: $\mathrm{Ta}=+25^{\circ} \mathrm{C}$ at $\mathrm{IL}=(90) \mathrm{mA}$, TBD (min.), (27.2) (typ.), (31.5) (max.) V $\rightarrow \mathrm{Ta}=+25^{\circ} \mathrm{C}$ at $\mathrm{IL}=90 \mathrm{~mA}, 24.4$ (min.), 27.1 (typ.), 29.8 (max.) V $: \mathrm{Ta}=+70^{\circ} \mathrm{C}$ at $\mathrm{IL}=(90) \mathrm{mA},(23.5)($ min. $) \mathrm{V}$ <br> $\rightarrow \mathrm{Ta}=+70^{\circ} \mathrm{C}$ at $\mathrm{IL}=90 \mathrm{~mA}, 23.2(\mathrm{~min})$. <br> $: \mathrm{Ta}=-20^{\circ} \mathrm{C}$ at $\mathrm{IL}=(90) \mathrm{mA}$, TBD (max.) V $\rightarrow \mathrm{Ta}=-20^{\circ} \mathrm{C} \text { at } \mathrm{IL}=90 \mathrm{~mA}, 31.4(\max .) \mathrm{V}$ <br> - $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ at $\mathrm{IL}=95 \mathrm{~mA}:(31.4)($ max. $) \mathrm{V} \rightarrow 31.5$ (max.) V <br> P10 Power supply voltage ripple <br> - Ripple voltage: (300) mVp-p $\rightarrow 300 \mathrm{mVp}-\mathrm{p}$ <br> P10 Fuse (specified) <br> P25 Optics - Optical characteristics <br> - Luminance: TBD cd/m² (min.) $\rightarrow 800 \mathrm{~cd} / \mathrm{m}^{2}$ (min.) <br> - Response time - Ton: (3), (5) ms (typ., max.) $\rightarrow 3$, 5 ms (typ., max.) <br> - Toff: (15), (21) ms (typ., max.) $\rightarrow 15,21 \mathrm{~ms}$ (typ., max.) <br> - Viewing angle $-\theta$ R: $(70)^{\circ}$ (min.) $\rightarrow 70^{\circ}$ (min.) $-\theta \mathrm{L}:(70)^{\circ}(\min .) \rightarrow 70^{\circ}(\min .)$ <br> $-\theta \mathrm{U}:(70),(80)^{\circ}$ (min., typ.) $\rightarrow 70,80^{\circ}$ (min., typ.) <br> $-\theta \mathrm{D}:(70)^{\circ}$ (min.) $\rightarrow 70^{\circ}$ (min.) <br> - Note2: $\mathrm{IL}=(90) \mathrm{mA} \rightarrow \mathrm{IL}=90 \mathrm{~mA}$ <br> - Note6: TopF $=\mathrm{TBD}{ }^{\circ} \mathrm{C} \rightarrow \mathrm{TopF}=35^{\circ} \mathrm{C}$ <br> P27 Estimated luminance lifetime <br> - LED elementary substance $-25^{\circ} \mathrm{C}: \mathrm{IL}=(90) \mathrm{mA},(60,000) \mathrm{h} \rightarrow \mathrm{IL}=90 \mathrm{~mA}, 70,000 \mathrm{~h}$ $-70^{\circ} \mathrm{C}: \mathrm{IL}=(90) \mathrm{mA}, \mathrm{TBD} \mathrm{h} \rightarrow \mathrm{IL}=90 \mathrm{~mA}, 60,000 \mathrm{~h}$ <br> P30 Others <br> - (3): ... for repairing and so on (elimination) |

## REVISION HISTORY



